

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

TRI-LEVEL OPTIMIZATION MODELS TO DEFEND
CRITICAL INFRASTRUCTURE

by

Pablo Alvarez San Martin

September 2007
 Thesis Advisor: Kevin Wood
 Second Reader: Javier Salmeron

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Tri-Level Optimization Models to Defend Critical
Infrastructure
6. AUTHOR(S) Pablo Alvarez San Martin

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis develops and solves a tri-level optimization model to plan the optimal defense of an infrastructure
from intelligent attack. We assume that a “defender” will first use limited defensive resources to protect system’s
components; then, an intelligent adversary (“attacker”) will use limited offensive resources to attack unprotected
components in order to inflict maximum damage to the system. The defender guides system operation with an
optimization model, so increased operating cost equates to damage. This leads to a tri-level “defender-attacker-
defender” model (DAD), where the second “defender” means “defender as system operator.”

The general DAD is NP-hard and requires decomposition to solve. We develop four decomposition
algorithms: direct, nested, reformulation-based, and reordering-based. The reordering-based algorithm computes an
optimistic bound by reordering the stages of the DAD, and the reformulation-based algorithm uses subproblems that
resemble standard capacity-interdiction models. Computational tests on generic instances of “defending the shortest
path” (DSP) show the nested and reformulation-based algorithms to be twice faster than the first, on average.

A hypothetical instance of DSP provides a concrete illustration: A Spanish marine unit, in an emergency
deployment, must defend its base-to-port route against potential terrorist attacks.

15. NUMBER OF
PAGES

103

14. SUBJECT TERMS
Critical infrastructure, tri-level optimization models, mixed-integer linear program, homeland security

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

TRI-LEVEL OPTIMIZATION MODELS TO DEFEND CRITICAL
INFRASTRUCTURE

Pablo Alvarez San Martin
Lieutenant Commander, Navy
Spanish Naval Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Pablo Alvarez San Martin

Approved by: Kevin Wood
Thesis Advisor

Javier Salmeron
Second Reader

James N. Eagle
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis develops and solves a tri-level optimization model to plan the optimal

defense of an infrastructure from intelligent attack. We assume that a “defender” will first

use limited defensive resources to protect system’s components; then, an intelligent

adversary (“attacker”) will use limited offensive resources to attack unprotected

components in order to inflict maximum damage to the system. The defender guides

system operation with an optimization model, so increased operating cost equates to

damage. This leads to a tri-level “defender-attacker-defender” model (DAD), where the

second “defender” means “defender as system operator.”

The general DAD is NP-hard and requires decomposition to solve. We develop

four decomposition algorithms: direct, nested, reformulation-based, and reordering-

based. The reordering-based algorithm computes an optimistic bound by reordering the

stages of the DAD, and the reformulation-based algorithm uses subproblems that

resemble standard capacity-interdiction models. Computational tests on generic instances

of “defending the shortest path” (DSP) show the nested and reformulation-based

algorithms to be twice faster than the first, on average.

A hypothetical instance of DSP provides a concrete illustration: A Spanish marine

unit, in an emergency deployment, must defend its base-to-port route against potential

terrorist attacks.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. CRITICAL INFRASTRUCTURE ...1
B. THESIS OUTLINE..6

II. FORMULATIONS FOR THE TRI-LEVEL “DAD” MODEL...............................7
A. A GENERAL DEFENDER-ATTACKER-DEFENDER MODEL7

1. Definitions and Model Assumptions ..7
2. The Defender-Attacker-Defender Model []LPDAD mxm10

B. A CAPACITY-INTERDICTION FORMULATION13

III. AN ATTACKER-DEFENDER-DEFENDER MODEL FOR BOUNDING
“DAD” ...15
A. MODEL FORMULATION...15
B. STRONGER BOUNDS: STRENGTHENING “ADD”16

IV. SOLUTION METHODOLOGIES...21
A. DEFENDER-ATTACKER-DEFENDER MODEL21

1. A Decomposition Algorithm to Solve DAD......................................22
2. Implementation of DAD for “Defending the Shortest Path”24
3. Stronger Bounds for DAD ...27

B. CAPACITY-INTERDICTION DEFENDER-ATTACKER-
DEFENDER MODEL ...29
1. An Algorithm to Solve DAD-CN...31
2. Implementation of DAD-CN Model for DSP...................................32

C. THE ATTACKER-DEFENDER-DEFENDER MODEL...........................34
1. An Algorithm to Solve ADD..35
2. Implementation of ADD for DSP..36

D. A SPECIALIZED ALGORITHM TO SOLVE DSP38
1. Implementation of MXSP in +G ...40
2. Solving MXSP by Decomposition [-D]LPMXSP42

a. An Algorithm to Solve MXSP by Decomposition43
b. Implementation of MXSP in +G by Decomposition.............44

V. COMPUTATIONAL RESULTS..47
A. COMPUTATIONAL RESULTS FOR DAD MODELS.............................47
B. BOUND QUALITY FROM ADD MODELS ..51

VI. PRACTICAL EXAMPLE...53
A. PROBLEM DEFINITION ..53
B. BUILDING THE NETWORK ...56
C. SOLVING THE PROBLEM ..58
D. ANALYSIS ...60

VII. CONCLUSIONS ..63

 viii

APPENDIX I. NOTATION...67

APPENDIX II. DETAILED COMPUTATIONAL RESULTS FOR PROBLEMS IN
CHAPTER V ..69
A. STANDARD DAD AND NESTED DECOMPOSITION69
B. IMPROVED STANDARD DAD DECOMPOSITION70
C. CAPACITY-INTERDICTION DAD ...72
D. MXSP PROBLEM IN AN EXPANDED NETWORK MODEL73

APPENDIX III. PRACTICAL EXAMPLE IN CHAPTER VI: FIGURES AND
TABLES..77

LIST OF REFERENCES..81

INITIAL DISTRIBUTION LIST ...85

 ix

LIST OF FIGURES

Figure 1. Network to illustrate the tightening and validity of the ADD+ lower
bound..17

Figure 2. 4-node network to show a simple DSP problem where the lower bound
provided by the master problem can be tightened. ..27

Figure 3. Transformation of the interdicted system of Figure 1. to solve a capacity-
expansion model and obtain a lower bound...29

Figure 4. Original network G with 4 nodes and 4 arcs that represents a hypothetical
shortest-path problem that the defender must solve.39

Figure 5. Expanded network +G when 1wb = ...39
Figure 6. Network square topology with an n×n grid of nodes.......................................47
Figure 7. CPU times for DSP problem using Algorithm 1. ..49
Figure 8. Map of Cadiz Bay (Spain) showing the two sites of interest (Map from

Wikipedia 2007)...54
Figure 9. Computational results for long topology grids. ...75
Figure 10. Computational results for square-topology grids...75
Figure 11. Cadiz Bay road map showing the network nodes. (Map from Michelin

2007). ...77
Figure 12. Area map showing the optimal solution to the tri-level problem given by

DAD (Map from Michelin 2007). ..79

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Computational results for DSP using Algorithm 1 and 1A (Section
IV.A.3.). ...48

Table 2. Computational results for Algorithm 2 (Section IV.B.8.).50
Table 3. Bound quality for ADD+ models solving DSP. ...51
Table 4. Node-list snapshot for the sample network..56
Table 5. Snapshot of the arc list for the sample network...58
Table 6. Computational results for Algorithm 1 []LPDAD ..59
Table 7. Computational results of Algorithm 2 [-CN2]LPDAD with M = 2.059
Table 8. Notation and definition of terms used..68
Table 9. Computational results for Algorithm 1 and Algorithm 1A implementing

DSP.. ..70
Table 10. Computational results for modified Algorithm 1B implementing DSP.71
Table 11. Computational results for Algorithm 2 [-CN2]LPDAD , implementing

DSP. ...73
Table 12. Computational results for MXSP...74
Table 13. Optimal defensive, attack and traversing plan for the estol DSP problem.78

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I thank my thesis advisor, Professor Kevin Wood, for his expert guidance,

countless hours of dedication, and timely revisions. Without his support, this thesis could

not have been conceived, nourished, or completed.

I, also, thank my second reader, Professor Javier Salmeron, for his critical view,

and thorough revision. His valuable comments improved the quality of this thesis.

Professor Matthew Carlyle (“network flows” class) and Cap. Matthew Desmon

(USMC)/Lt. Casey Mahon (USN) (our class project) enlightened me with ideas that

helped with approaching this thesis with a clearer perspective.

Finally, I thank my wife, Maria, and my daughter, Paula, for their understanding

and constant support during these past months. They did their best to prevent me from

laptop addiction.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

This thesis develops and solves tri-level optimization models to solve the problem

of defending a generic system from intelligent attack. We assume that a “defender” will

use limited resources to protect system components, and an intelligent adversary

(“attacker”) will use limited offensive resources to inflict the maximum possible damage

on the defended system. The tri-level model becomes a “defender-attacker-defender”

model (DAD). The defender guides his system operation with an optimization model, so

damage is measured in terms of increased operations cost.

We develop a general DAD model that is, apparently, solvable only through

decomposition. Thus, we devise a decomposition Algorithm 1 for DAD. The master

problem for this decomposition resembles a master problem for a standard Benders

decomposition, but the subproblem, instead of being a standard linear program (LP), is a

mixed-integer linear program (MIP). Algorithm 1 solves this subproblem directly, i.e.,

with LP-based branch-and-bound, while Algorithm 1A solves it by Benders

decomposition. Thus, Algorithm 1A may be viewed as a nested decomposition algorithm.

Algorithm 1A proves to be almost twice as fast as Algorithm 1 (1.87 times faster,

on average) on test problems that involve “defending the shortest path” (DSP). DSP

represents a situation in which the defender-operator needs to solve a minimization

problem to operate the system optimally (e.g., transiting from station A to station B in the

quickest time); the attacker seeks to maximize the defender’s shortest path by interdicting

some components of the system (e.g., cutting down some segments that lie in the A-B

path); and the defender has to minimize the largest traversal distance after the attacker’s

best attack.

A capacity-interdiction formulation provides an alternative modeling approach to

the same DAD model. This formulation is somewhat more complex than the formulation

of the standard decomposition for DAD, and is also more difficult to implement.

However, it proves to be almost as fast as nested decomposition (Algorithm 1A) for the

test cases based on DSP.

 xvi

Interchanging the order of the first two levels of optimization in the model, that is,

converting “min-max-min” into “min-min-max,” can provide an optimistic lower bound

on the optimal objective-function value. We give the advantage to the defender who gets

to see the attacker’s plan before defending the system and operate it. The quality of the

bound provided by ADD may be poor, but it can be improved by giving extra resource to

the attacker, creating “ ADD+ .”

When the defender-operator solves a shortest-path problem, and the restrictions

on the resources are given by simple knapsack constraints, ADD (and ADD+) can be

solved as a special network-interdiction problem called “maximizing the shortest path”

(MXSP). In MXSP, the original system is expanded in levels, as many as the number of

units of defensive resource, and each jump between levels corresponds to a defensive

action taken by the defender.

A practical example based on DSP illustrates the effectiveness of the models and

algorithms developed in this thesis. A small, Spanish infantry unit must traverse from the

Marine Corps’ headquarters to a nearby naval base for immediate deployment, using the

road network in Cadiz Bay, Spain. A terrorist group can interdict up to six road segments,

and the Marine Command can defend against these attacks by protecting 10 segments, by

means of armed patrols. The road network built to represent this example contains

approximately 200 nodes and 630 arcs. The solution provides the armed patrols optimal

allotment and the time that would take the infantry unit to get to the naval base in the

worst case scenario.

1

I. INTRODUCTION

This thesis addresses the problem of defending a critical infrastructure (or system)

from intelligent attack by developing and applying tri-level optimization models. We

assume the system’s operator, called “defender,” will use limited resources to protect

(defend) system components. Subsequently, an intelligent adversary will use limited

offensive resources to inflict maximum damage to the defended system. The defender

guides system operation with a minimizing optimization model, so increased operating

costs equate to damage. This leads to a tri-level “defender-attacker-defender” model

(DAD), where the second “defender” means “defender as system operator.” We explore,

propose and implement different tri-level models to solve DAD.

This chapter defines and gives examples of critical infrastructure. It specifies a

model of behavior for the defender, attacker, and their interactions, and it introduces a

general framework under which these tri-level models will be developed.

A. CRITICAL INFRASTRUCTURE

Especially after 2001, governments have devoted much time and effort to identify

critical infrastructure (CI) and to assess the impact on their nation’s wealth that

disruptions to that CI might have. The USA Patriot Act (U.S. Senate and House of

Representatives 2001) defines CIs as:

… systems and assets, whether physical or virtual, so vital to the United
States that the incapacity or destruction of such systems and assets would
have a debilitating impact on security, national economic security,
national public health or safety, or any combination of those matters.

The National Strategy document for Homeland Security (Department of Homeland

Security 2002) identifies thirteen sectors in which most of CI systems may be framed,

including agriculture, food, water, public health, energy, transportation, information, and

telecommunications.

The Department of Homeland Security (DHS) is responsible for keeping the

national infrastructure inventory updated with basic information about the systems,

including: the elements involved, either human, physical or cyber; services provided;

2

dependencies; and interdependencies. (The U.S. Office of the Inspector General stated

that, as of January 2006, the National Infrastructure Database already contained up to

77,069 assets ranging from gas stations and retail outlets to nuclear plants and water

distribution systems; see Inspector General 2006.)

Listing the systems is only the first step. A comprehensive vulnerability analysis

is important to enable authorities to evaluate the effects of potential attacks and to invest

to protect or harden system components. This is being accomplished by setting a common

methodology for risk assessment, the Risk Management Framework, provided by the

National Infrastructure Protection Plan (“NIPP”; see Department of Homeland Security

2002).

Many of these systems were built to be cost-effective, which implies they often

provide only a minimum level of redundancy to satisfy demand or other requirements.

They may reasonably well handle disruptions caused by random degradation of physical

components, accidents due to mechanical or human failure, and acts of nature. However,

these CIs may not show robustness against an intelligent attack that destroys critical

components. For example, three bridges crossing a river in a populated city may handle

the traffic between both sides even when one of them is closed due to a major accident.

However when all three are intentionally put out of service, the crossing traffic ceases

completely. Traditional vulnerability analysis needs the perspective of the terrorist threat

to capture the behavior and response of a particular system under a new set of

circumstances.

The standardized method for vulnerability assessment (Department of Homeland

Security 2006) starts by analyzing a CI in terms of numerical measures of threat (t),

consequence (c), and vulnerability (v) for individual system components. Threat reflects

the likelihood that a component will suffer a terrorist attack. Consequence reflects the

reduction in the system’s performance given a successful attack on a component (the

greater the reduction in performance, the greater is the consequence). Vulnerability

reflects the likelihood that, if an attack occurs, the component will be partially damaged,

incapacitated, or destroyed.

3

Every component i of a particular CI system is evaluated and given numerical

values it , ic and iv , representing threat, consequence and vulnerability, respectively.

Then, a measure of risk (r) is estimated for a particular system. In general (), ,r f t c v= ,

but typically, r t c v= × × . Components are then prioritized with respect to the estimated

risk and this ordered list eventually provides the decision-maker with a picture to help

him decide which components should be given priority for protection, where to allocate

resources, what protective programs should be instituted, and what the appropriate level

of investment in programs should be.

The protective programs may seek to prevent any potential attack by taking

specific actions on the elements of the system subject to protection (e.g., building

stronger fences along the perimeter of key installations, increasing the number of

armored patrols on any given border segment), or to reduce its effects (e.g., by training

emergency-response teams). However, this thesis primarily focuses on physically

protecting CI components from attack.

The analysis of those protective actions and their impact on the risk mitigation,

eventually guides the investments used in a particular program. Sometimes no analysis is

available, and the program manager implements defensive measures by just following the

guidelines of a written manual (FEMA 2007).

How should a limited defensive budget be spent to protect a single CI system as

well as possible? The current methods utilized to guide investments into protective

programs are based on priorities on individual components, but ignores component

interactions. We propose the modeling and solution of an optimal defensive plan obtained

from the solution of a tri-level optimization model.

We are interested in many different systems, but these are often modeled as

networks, where some commodity (e.g., electricity, water) must be moved from one or

more points to one or more other points, while following the topology of the underlying

network and laws of physics. For example, consider the U.S. Strategic Petroleum Reserve

(Department of Energy 2007): This system can be represented as a network in which

4

storage sites represent source nodes; pumping stations represent transit nodes; refineries

and shipping ports represent sink nodes; and pipelines correspond to arcs that connect the

various nodes.

We assume that the operator of the infrastructure, (henceforth called the defender-

operator), operates his system following guidance from an optimization model

(“Defender Model,” or “D”), specifically by solving a linear program (LP). For example,

the SPR management office, as the defender-operator, operates the system during an oil

emergency, and possibly after an attack on the system, to ensure that enough oil flows

from storage sites to meet demands.

Before defending the system, the protecting agency (henceforth called defender)

needs to know how the terrorist organization (henceforth called the attacker) is going to

attack it. We assume that the attacker, according to his resources, seeks to maximally

disrupt a system’s operations by interdicting certain components. Thus, the attacker

solves a bi-level optimization model, Attacker-Defender (AD), where “D” denotes the

defender-operator’s optimization model mentioned above, solved at the inner level (See

Brown, Carlyle, Salmeron and Wood 2005). There is no uncertainty about the attacker’s

resources, or what the effect of attacks might be. This is important because deterministic

interdiction problems, as presented in this paper, rely on accurate information. Otherwise,

we would be dealing with a stochastic interdiction problem (Cormican, Morton and

Wood 1998), which is beyond the scope of this thesis.

As opposed to Cournot models (Cournot 1838), where both opponents move

simultaneously, we model the opponents’ interactions following the rules of a

Stackelberg game (Stackelberg 1952). The leader (attacker) plays first by interdicting the

system in an optimal way, and then, the follower (defender) observes the actions taken by

the leader and makes his best choice. In most of the economic models played by the

Stackelberg rules, any non-optimal solution adopted by the follower that deviates from

equilibrium may hurt not only himself, but also, the leader. However, this is not the case

here: If the attacker makes a non-optimal move, the results cannot cause worse damage

5

than foreseen by the solution of the bi-level model. Also, the defender-operator has the

option to improve his cost by choosing another course of action which takes advantage of

the attacker’s neglect.

One of the key assumptions of these games is perfect information. Decisions

taken by one player are based on complete knowledge of the actions that will be taken by

the other. Furthermore, we assume that the attacker has perfect information about the

system. This means that no components of the system are hidden to the attacker and,

essentially, both players deal with the same problem. This leads to sensibly conservative

damage assessments for the defender: The attacker can cause no more disruption to the

system than the worst case identified by the solution of AD.

The solution of AD provides valuable information to the defender-operator. First,

it points out critical components of the system. Second, it lays the groundwork for the

next embellishment of the Stackelberg game, the addition of a level of active defense:

Using a tri-level model, the defender seeks to minimize the maximum damage an attacker

can inflict to the system when it is operated optimally.

The defender therefore, needs to solve a Defender-Attacker-Defender model DAD

(See Brown, Carlyle, Salmeron and Wood 2005). Observe that, in order to differentiate

the two roles that the defender plays in this model, a distinction has been made between

defender and defender-operator. The former defends the system, while the latter operates

it optimally.

Brown, Carlyle, Salmeron and Wood (2005) describe new bi-level models to

solve the problem of defending CI, applying these models to electrical power grids,

subways, airports and other systems. These authors also introduce the idea of embedding

a given AD model in a tri-level DAD and state that this type of problem solves only with

“extreme difficulty.”

Brown, Carlyle, Salmeron and Wood (2006) formulate and solve an electrical-

grid protection problem with a tri-level DAD model. However, as opposed to AD

problems, full-scale tri-level problems cannot be solved yet.

6

This thesis proposes a general framework for DAD models represented as tri-level

mixed-integer linear programs (TLMIPs), proposes several solution methods for such

models, and investigates the computational behavior of these methods. Medium-size

problems are implemented and solved by these models.

In general, the inner optimization problem of any TLMIP developed in this thesis

is an LP for the defender’s system-operation model, and resource constraints on system

defense and attack will be fairly simple, such as knapsack constraints.

B. THESIS OUTLINE

Chapter II proposes and develops a general tri-level DAD model, and a capacity-

interdiction DAD, which reformulates the basic DAD probing other solving

methodologies.

Chapter III formulates an ADD model (Attacker-Defender-Defender model),

where the two outer optimization layers, i.e., “DA,” have been interchanged for the

ultimate purpose of bounding, and eventually solving, DAD. Interchanging the order of

these two levels gives the advantage to the defender, so ADD yields a lower bound for a

min-max-min DAD. A method is also described to add resource for the attacker in order

to tighten the bound. Provided this bound is tight enough and easy to obtain, ADD can be

incorporated in the DAD decomposition method to accelerate the convergence of the

algorithm.

Chapter IV presents different solution algorithms for these models and the

implementation for the “Defending the Shortest-Path” problem (DSP).

Chapter V presents computational results from testing hypothetical network

examples of different size and shape against the aforementioned algorithms.

Finally, Chapter VI illustrates a deployment protection problem of a Spanish

Marine Corp Special Operation Forces (SOF) unit. This exercise requires the solution of

DSP, using a tri-level DAD model, for a small Infantry entity who must traverse from its

home base in San Fernando to the Naval Base in Rota for emergency deployment.

7

II. FORMULATIONS FOR THE TRI-LEVEL “DAD” MODEL

This chapter describes a general DAD model as a tri-level mixed-integer program

(TLMIP). Direct solutions will typically be impossible, so we provide several indirect

solution approaches.

We simplify model notation using the following conventions:

• Models and model instances are represented by acronyms in uppercase

letters,

• A superscript indicates the type of inner optimization problem (e.g., “LP”

for linear program or “dLP” for a dual linear program),

• Lowercase letters then identify the sense of each level’s optimization,

specifically, “m” for minimization and “x” for maximization.

• A “hat” over “m” or “x” indicates that the decision variables for that stage

are fixed..

For example, LPDAD mxm stands for a tri-level defender-attacker-defender model

with a min-max-min optimization structure, and with a linear program representing the

defender-operator’s optimization problem. And, ˆLPDAD mxm is really just a bi-level

attacker-defender model because the defender’s variables are fixed. (Appendix I contains

the complete description of the notation used throughout this thesis.)

A. A GENERAL DEFENDER-ATTACKER-DEFENDER MODEL

1. Definitions and Model Assumptions

We state the inner “D problem” as

[D A
()

] min ()
Y

D f
∈y x

y

At this inner level of DAD, the defender-operator operates his system as best as

possible by setting decision variables y to minimize operating cost, including penalties

for unsatisfied constraints. This minimization can also represent other objectives such as

maximizing operating profit or system output, minimizing unserved demand, and so

8

forth. The set ()Y x represents operating constraints, e.g., flow-balance constraints in a

pipeline model, as affected by a vector of attacks x that restricts that operation.

In fact, the attacker seeks maximize the defender-operator’s cost of operating the

damaged system, so the “AD model” is

[D
()()

] max min ()
YX

AD f
∈∈ y xx w

y .

where ()X w represents feasible attack plans after the defender implements a defensive

plan w . If component k is defended and made invulnerable, the assumption of

transparency of information implies that component k will not be attacked. Of course,

()X w will also include at least one resource constraint that limits the extent of possible

attacks.

In the outer level of DAD, the defender uses his limited defensive resources to

protect his system from attack. At this level, the defender’s goal is to minimize the

maximum damage that the attacker can inflict, where damage is measured in terms of the

optimal solution to the defender-operator’s inner model.

The three stages that this tri-level DAD model comprises are summarized as

follows:

()()
[] min max min ()

W YX
DAD f

∈ ∈∈w y xx w
y

The vector w represents the defensive actions taken by the defender to protect

certain components of the system, and W represents the feasible region for the defender.

[]DAD posits that the defender wants to minimize the damage the attacker can

cause. This will be accomplished by protecting some system components and, thereby,

certain activities. For simplicity, we assume

1. Binary defensive actions: 1kw = if the kth component has been

protected, and 0kw = otherwise. The set W incorporates these binary

restrictions as well as the defensive resource constraints.

9

2. Binary attacks: 1kx = if the kth component k is attacked, and

0kx = otherwise. The set X incorporates these binary restrictions as

well as the attacker’s resource constraints.

3. Continuous activities: ky represents the level of activity, set by the

defender-operator, for component k. We assume that ≤ ≤0 y u and let

diag()U = u .

4. A “defense” completely armors a component. That is, 1kw = implies that

component k is invulnerable to attack. Although 1kx = may be possible

when 1kw = , the attacker gains nothing from the corresponding attack.

Since the attacker does not have so much resource that he can waste

attacks on defended components, along with the assumption of perfect

information, we may assume that 1kw = also implies 0kx = .

5. One-to-one relationships are assumed between system components,

attacks, and activities: A single attack stops exactly a single activity and

an activity is stopped by no more or less than one attack.

The DAD model now becomes:

()

[0] min max min ().
W YX

U

DAD f
∈ ∈∈

≤ − ≤ −
w yx

x 1 w y 1 x

y

This model allows numerous generalizations such as “uninterdictable” activities and

interdictions that affect more than one activity, although these generalizations will not be

pursued in this thesis.

We also assume:

6. The property of relatively complete recourse prevails for DAD with

respect to w and x . (This property derives from the stochastic-

programming literature; see Birge and Louveaux 1997, pp. 92-93). In

particular, for any defensive plan W∈w , the set

{ }() |X X= ∈ ≤ − ≠ ∅w x x 1 w ; and for any attack plan ()X∈x w , the

10

set { }() | ()Y Y U= ∈ ≤ − ≠ ∅x y y 1 x . This means that, in all stages, the

following player has a feasible response to the immediately preceding

leader’s play.

Proposition 1: For sufficiently large values of kd , [0]DAD may be reformulated as

[1] min max min () () ,T T

W YX
DAD f D+

∈ ∈∈
+ −

w yx
y x w y

where 1 2 | |(...),d d d=d K ()D diag= d , and the term ()T T +
−x w stands for the vector

maximum of and ()T T−0 x w .█

The proof is trivial. Actually, [1]DAD can also be used when interdiction of an

activity does not force that activity’s level to 0. For instance, suppose (a) the relevant CI

system is the road network of a particular region; (b) the defender-operator wants to go

from base A to airport B using a shortest path; (c) the attacker seeks to interdict road

segments by means of bombardment (terrestrial, aerial, or via improvised explosive

devices) to maximize the defender’s shortest (quickest) A-B path; and (d) the defender

can protect certain segments from attack with extra patrols or anti-aircraft weapons. In

this case, an interdicted road segment might simply have a delay kd added to its nominal

traversal time kc , and it may be worth the defender-operator’s effort to incur this delay.

We also note that the “+” operator here can be easily replaced by linear constructs and

does not add any difficulty to the model’s solution.

2. The Defender-Attacker-Defender Model []LPDAD mxm

When the inner minimization of [1]DAD is a linear program, the defender must

solve this is problem:

()()[] min max minLP T T T

W X
DAD mxm D

+

∈ ≥∈
+ −

w y 0x
c x w y (1)

s.t. [:dual vars. for fixed and]y yA =y b π x w , (2)

11

where the vector c denotes the activity costs and the constraints y yA =y b correspond to

general system-operation constraints. Note that, hereafter, dual variables for linear-

programming restrictions of MIPs—for instance, π in []LPDAD mxm —will be denoted in

square brackets next to the relevant constraints, but without the explanation as in (2).

Chapter IV proposes some solution procedures for []LPDAD mxm . However, some

preliminary thoughts about how we might approach the problem will help up us to

develop further models and solution procedures. The first attempt to solve this model

might be to transform []LPDAD mxm into []dLPDAD mxx . This is done by linearizing the

expression in the objective function including the necessary constraints in the matrix yA ,

temporarily fixing w and x , taking the dual of the inner minimization problem, and

releasing both variables after rearranging the terms. A bi-level mixed-integer linear

program (BLMIP) results:

[] min max ()dLP y T

W
DAD mxx

∈w x,π
b π (3)

()s.t. ()y TA D +≤ + −π c x w (4)

 free, X∈π x (5)

Given the last formulation, we would like again to take the dual of the inner

maximization problem and solve a minimizing MIP problem by choice of , ,x y w .

However, this is impossible because that inner maximization is not an LP. Therefore, we

need an alternative approach.

We need bounds to enclose the objective function from above and below.

Furthermore, when sequentially calculated in an iterative algorithm, these bounds must

converge to the optimal value *z .

Since the outer layer of the tri-level problem is a minimization, fixing the defense

plan to ˆ=w w , and solving the resulting problem, ˆ[]LPDAD mxm , leads to the upper

bound *ˆ()z z≥w . By taking the dual of the inner minimization in ˆ[]LPDAD mxm , we see

that it suffices to solve this MIP:

12

ˆ ˆ[] () max ()dLP y TDAD mxx z =
x,π

w b π (6)

()ˆs.t. ()y TA D +≤ + −π c x w (7)

 free, X∈π x (8)

This MIP can be solved either directly or by using a decomposition algorithm. A

solution ()ˆ ˆ,x π represents a tentative attack plan x̂ by the attacker and the resultant best

dual response to that attack plan by the defender-operator. (Observe that the defender-

operator’s operating plan is obtained by solving the primal ˆ ˆ[]LPDAD mxm given both

ˆ ˆ and w x .)

Now, suppose that, for a given defensive plan ŵ , we have enumerated all

possible attack plans x̂ and corresponding extreme-point dual responses π̂ by the

defender-operator. Let ˆ ˆ(,) X∈ Πx π denote this enumerated set, and let ˆ ˆXΠ denote any

nonempty subset of XΠ . A master problem for the tri-level problem is defined as:

,
ˆ ˆ ˆ[] min

ˆ ˆˆ ˆ ˆ ˆs.t. () (,)
z

y T T

MPmxx z z

z D X

=

≥ − ∀ ∈ Π

w

b π x w x π
 (9)

W∈w (10)

Observe that, whenever ˆ 1kx = , the term k kd w− defines an upper bound on how much the

defender would save if he had protected activity k.

Since the solution of the subproblem (equations (6)-(8)) certainly occurs at

()ˆ ˆ, X∈ Πx π , it follows that ˆ ˆ[]MPmxx is equivalent to []LPDAD mxx when ˆ ˆX XΠ = Π .

When ˆ ˆX XΠ ⊆ Π , we call ˆ ˆ[]MPmxx the relaxed master problem. Indeed, it defines a

relaxation of []dLPDAD mxx , and ẑ gives a lower bound on the optimal objective to

[]LPDAD . Of course, we hope to obtain a solution by generating only a small subset

ˆ ˆXΠ , with each () ˆ ˆˆ ˆ, X∈ Πx π being generated in an iteration of a decomposition

algorithm. The complete procedure is shown in Section IV.A.

13

B. A CAPACITY-INTERDICTION FORMULATION

One of the difficulties encountered in the formulation of []dLPDAD mxx is the

apparent impossibility of transforming it into a simple minimization problem. Other ways

to formulate and to solve the problem must be explored. This capacity-interdiction (CN)

model, which assumes that the level of an interdicted activity must be 0, will prove

useful:

[-CN1] min max minLP T

W X
DAD mxm

∈ ∈ ≥w x y 0
c y (11)

s.t. []y yA =y b α (12)

() []U≤ − +y 1 x w β (13)

[]≤y u θ (14)

Essentially, this model is simply a reformulation of [0]DAD when the inner

minimization is an LP.

Again, we may convert this problem into a bi-level nonlinear MIP (BLMINLP)

by temporarily fixing x , and taking the dual of the inner minimization problem. After

rearranging terms and releasing x , we obtain:

, ,
[-CN1] min max max () ()dLP y T T T T

W X
DAD mxx U

∈ ∈
+ − + +

α β θw x
b α 1 x w β u θ (15)

s.t. ()y TA I I+ + ≤α β θ c (16)

 free, ,≤ ≤α β 0 θ 0 (17)

This BLMINLP can be solved, at least in theory, by decomposition methods.

(Note that a “max-max” is just a “max,” so, in essence, the problem has been converted

into a min-max defender-attacker model with a mixed-integer optimization model being

solved by the attacker).

The next step to improve the model is to allow the defender-operator to make use

of activities that have been interdicted (the penalties kd are no longer sufficiently large to

prevent that from happening). In order to do that, we need to slightly change the model to

14

,
[-CN2] min max min ()LP T T

W X
DAD mxm

′∈ ≥∈
′+ +

w y y 0x
c y c d y (18)

s.t. []y y yA A ′+ =y y b α (19)

() []U≤ − +y 1 x w β (20)

[].′+ ≤y y u θ (21)

Essentially, we are expanding the infrastructure by doubling the existing

activities. By choosing ky′ instead of ky , the defender makes use of the kth activity, which

has been interdicted, and he must, therefore, pay a penalty. Observe that the variable ky′

is not subject to the second set of constraints because it represents a fictitious activity that

is neither interdicted nor defended and, by construction, it will only be used when the

associated activity is interdicted.

Taking the dual of the inner min problem yields the following formulation:

, ,
[-CN2] min max max () ()dLP y T T T T

W X
DAD mxx U

∈ ∈
+ − + +

w x α β θ
b α 1 x w β u θ (22)

s.t. ()y TA I I+ + ≤α β θ c (23)

()y TA I+ ≤ +α θ c d (24)

 free, ,≤ ≤α β 0 θ 0 (25)

Chapter IV presents some methods to solve these models ([]LPDAD and

[-CN]dLPDAD) and their implementation for a specific problem: “Defending the Shortest

Path” (DSP).

15

III. AN ATTACKER-DEFENDER-DEFENDER MODEL FOR
BOUNDING “DAD”

This chapter formulates a tri-level model whose optimal objective value yields an

optimistic bound for DAD. The bounding model reorders the stages in DAD to create an

ADD model. This rearrangement simplifies the model, at least in theory, because the

inner two minimization levels can now be collapsed into one. By means of “solution-

elimination constraints,” the bound yielded can be brought closer to the optimal DAD

objective-function value to meet the stopping criterion of the decomposition method.

Solution methods are proposed in Chapter IV.

A. MODEL FORMULATION

Let us consider []LPDAD mxm . Suppose that we interchange the first two levels by

replacing min-max with max-min: The new model is []LPADD xmm . Because the

defender gets to observe the attacker’s plan before making his own defensive decisions,

which can nullify the effects of some individual attacks, we are giving the defender

advantage. The optimal objective of such a model will yield a lower bound on the optimal

objective value for []LPDAD mxm . This may be helpful for solving certain versions of this

problem. The attacker-defender-defender model (ADD) may be formulated as follows:

()()[] max min minLP T T T

X W
ADD xmm D

+

∈ ∈ ≥
+ −

x w y 0
c x w y (26)

s.t. []y yA =y b π (27)

Alternatively, its compact form is:

()()
,

[] max minLP T T T

X W
ADD xm D

+

∈ ∈ ≥
+ −

x w y 0
c x w y (28)

s.t. []y yA =y b π (29)

As we have seen before, the inner minimization problem has a nonlinear objective

function, and we cannot take its dual and obtain a linear, mixed-integer maximization

problem. Thus, we may also want to use a capacity-interdiction model reformulation.

16

If we assume that the penalties kd are much greater than the cost of the activities,

and that 0kw = and 1kx = imply that 0ky = , we can rewrite []LPADD xmm as:

[-CN1] max minLP T

X W
ADD xmm

∈ ∈ ≥x w ,y 0
c y (30)

s.t. []y yA =y b α (31)

() []U≤ − +y 1 x w β (32)

[]≤y u θ (33)

Constraints (32) establish an upper bound on activities depending upon

interdiction and defense. Constraints (33) represent capacity limitations for every

component (an example is maximum flow across a pipe segment of a water system). Note

that we invoke the property of “relatively complete recourse” here to ensure that the

model is feasible for any feasible attack plan x .

If we do not make the assumption that the penalties kd are large enough to

preclude the utilization of interdicted activities, we may enhance the model as follows:

[-CN2] max min ()LP T T

X W
ADD xmm

′∈ ∈
′+ +

x w ,y,y
c y c d y (34)

s.t. []y y yA A ′+ =y y b α (35)

() []U≤ − +y 1 x w β (36)

[]′+ ≤y y u θ (37)

, ′≥ ≥y 0 y 0 (38)

Recall that by selecting ky′ instead of ky , the defender agrees to use the kth activity

with the added penalty.

In Chapter IV, we develop some methods to solve these models.

B. STRONGER BOUNDS: STRENGTHENING “ADD”

Although the solution to ADD gives a lower bound for DAD, the bound may be

poor. Assume, for instance, that DAD has simple cardinality constraints for attacker and

defender resources and the right-hand sides of those constraints are the same. In this case,

the solution ()ˆ ˆ,w y obtained from ˆ[]LPADD xmm for any fixed interdiction plan x̂ , will

17

nullify all the attacks implied by x̂ . Thus, the bound is the obviously weak bound

provided by the solution to the defender-operator’s problem assuming no interdictions at

all. We can do better.

Consider the directed network depicted in Figure 1 where the defender-operator’s

objective is to find the shortest path from s to t. The nominal length of each arc (,)i j is

,i jc , and the potential delay that the attacker can inflict is ,i jd . The attacker will attack

two arcs and the defender will defend one. The optimal objective value for DAD is 3, but

the lower bound coming from ADD is 2 (Figure b). If we give three units of resource to

the attacker, the optimal objective value for the new problem, denoted by “ ADD+ ,” is 3

(Figure c) and, therefore, it provides a valid and stronger lower bound on the optimal

objective-function value *z .

s

3

2

1,1

1,1

1,1

2,1

t

c(i,j),d(j,j) ji

s

3

2

1,1

1,1

1,1

2,1

t s

3

2

1,1

1,1

1,1

2,1

t

a) b) c)

Figure 1. Network to illustrate the tightening and validity of the ADD+
lower bound. Figure a) is the original network; figure b) depicts the
solution to ADD and figure c) depicts the solution to ADD+ .

Thus, to tighten the lower bound from ADD, we may try to give the attacker extra

resource. However, if we give him too much, the resulting bound may be not valid. So,

how much extra resource can we give to the attacker and still be sure of a valid bound?

As in the example, assume that limits on resources for the attacker and the

defender are given by simple knapsack constraints, i.e., { }{ }0,1 |n x xX b∈ ≡ ∈ ≤x x a x

and { }{ }0,1 |n w wW b∈ ≡ ∈ ≤w w a w , respectively. Now, create an instance of ADD+ by

18

giving the attacker 0δ ≥ extra units of resource, i.e., replace X∈x in ADD with

{ }{ }() 0,1 |n x xX bδ δ∈ ≡ ∈ ≤ +x x a x . The model is formulated as follows:

()()
()

[()] max min minLP T T T

X W
ADD xmm D

δ
δ

++

∈ ∈ ≥
+ −

x w y 0
c x w y

s.t. []y yA =y b π

where δ would be the least interdiction resource which would make the defender use a

maximal defensive resource to counter it. A valid value for δ still needs to be found.

Theorem 1: Let *z be the optimal objective value of []LPDAD mxm , let ()*z δ be the

optimal objective value for [()]LPADD xmm δ+ , and define

{ } is maximal for w wW W b≡ ∩ ≤w a w . If

min x

W
δ

∈
≤

w
a w , (39)

then ()* *z zδ ≤ .

Proof: Let us write []LPDAD mxm with knapsack constraints for the defender and

attacker, and a general linear program for the defender-operator in this simplified form of

equation (1):

()* min max ,
W X

z f
∈ ∈

=
w x

x w (40)

where () ()(), min T T T

Y
f D

+

∈
≡ + −

y
x w c x w y .

Now suppose that the attacker has δ extra units of attack resource, with δ

satisfying (39), but must waste that resource on defended activities. This will have no

effect in the objective-function value because it is always feasible for the defender to

neutralize the “extra” attacks. Therefore,

()*

()
min max ,

W X
z f

δ∈ ∈
=

w x
x w (41)

19

s.t. x
k k k

k
a x w δ≥∑ (42)

Since the attacker must act first, interchanging the max and min benefits the

defender. Thus,

()*

()
max min ,

X W
z f

δ∈ ∈
≥

x w
x w (43)

s.t. x
k k k

k
a x w δ≥∑ (44)

 ()
()

max min ,
X W

f
δ∈ ∈

=
x w

x w (45)

 *()z δ= by definition.

Equality holds in (45) because (a) we may assume the defender, who now plays

second, will “post-defend” only interdicted activities and, thus, the left-hand side of (44)

will always be positive; and (b) constraint (39) ensures that that positive left-hand side is

always at least δ .

It may be the case that, even if δ does not satisfy (39), *()z δ is still a valid lower

bound on *z . For example, in the simple DAD problem described in Figure 1, 1δ = is

the maximum value that is guaranteed to be valid by Theorem 1. However, for 2δ = ,
*() 3z δ = is still a valid lower bound (in this case, * *()z zδ =). However, “cheating” in

this way may not always be possible.

The solution of ADD+ must be a feasible solution in DAD to be of any value.

Therefore, the defender’s actions must not only be feasible with respect to the initial

constraints W , but also need to nullify some of the attacks. The remaining ones either

represent a feasible solution for the attacker in the original DAD , or they do not have an

impact the objective-function value. Consequently, the defensive constraints in ADD+

are given by W .

To summarize the last two paragraphs more precisely, the solution of ADD+ will

give a lower bound for DAD provided that, in DAD , the optimal objective value is non-

increasing for increasing x (in A), and non-decreasing for increasing w (in D). That is,

20

extra attacks ()δ do not consume extra defensive resource because they do not affect the

objective-function value. Neither do extra defenses added to the problem, because the

best operating plan has already been protected and at least xb attacks have been left

uncovered. In this sense, the proof requires that w be “maximal” with respect to

constraints W .

For the special case where both the attacker and defender have cardinality

constraints in their respective resources, we can think of the following game sequence in

ADD+ :

• The attacker interdicts x wb b+ activities;

• The defender nullifies wb of those attacks and brings back the associated

activities to their original costs; and

• Finally, the defender-operator again finds the optimal operational plan for

the system given the increased costs for non-nullified attacks.

Ideally, ADD+ is solved in hopes that the solution yielded (*
ADD+w) is close

enough to the DAD objective-function value to meet optimality criterion. Thus, the

optimality conditions need to be tested in the DAD subproblem formulated in equations

(6)-(8) having *
ADD+w as an input ()*ˆ DAD ADD+←w w . If the upper bound of ˆ[]dLPDAD mxx

reveals a non-optimal gap, that is, DAD ADDz z ε− > , then ADD+ has to be recalculated

with an added solution-elimination constraint ˆ
ADD+≠w w . Hopefully, the convergence of

this algorithm to get an ε -optimal solution for DAD is faster than the decomposition

method for DAD itself.

The next chapter provides some statistics about the bound’s quality that this

ADD+ model yields.

21

IV. SOLUTION METHODOLOGIES

Thus far, we have presented variations on DAD and models for bounding DAD.

This section adds detail and illustrates general procedures for solving these models.

Section A provides a basic algorithm to solve DAD and illustrates this solution

procedure by solving the problem of “Defending the Shortest Path” (DSP). Section B

solves DSP using the capacity-interdiction version of DAD. Sections C and D deal with

ADD and ADD+ and build a special model (MXSP) for solving DSP. This is derived

from ADD+ and is based on a network-interdiction problem on an expanded network

with a particular structure.

A. DEFENDER-ATTACKER-DEFENDER MODEL

Chapter II sketched an algorithm to solve DAD by decomposition. We agree that

any feasible defense plan would give us an upper bound on the objective function. This

bound can be computed by fixing ˆ=w w and solving the following “upper-bounding

subproblem:”

()

ˆ[-SP]
ˆ() max ()

ˆs.t. ()
 free

.

dLP

y T

y T

DAD mxx
z

A D

X

+

=

≤ + −

∈

x,π
w b π

π c x w
π
x

ˆ[-SP]dLPDAD mxx is a mixed-integer program. We may try to solve it either

directly or by decomposition. In this latter case we would have an “inner” Benders-like

decomposition method for the subproblem, and an “outer” decomposition for the full

DAD (Henceforth we will call this method “nested decomposition,” O’Neill 1976). The

decomposition for the subproblem is defined by these two problems:

22

()()ˆ ˆ ˆ ˆ[] min T T TSP mxm D
+

≥
′ + −

y 0
c x w y (46)

s.t. y yA =y b (47)

,
ˆ ˆ[] max

z
MP mxm z′

x
 (48)

() ˆ ˆˆ ˆ ˆ ˆ ˆs.t. , (,)T T Tz D WY
+

≤ + − ∀ ∈c y x w y w y (49)
,X∈x (50)

where the set ˆ ˆWY in (48) comprises all pairs ˆ ˆ(,)w y identified by the subproblem (46) on

successive iterations.

Now, ˆ ˆ[]SP mxm′ is an LP and ˆ ˆ[]MP mxm′ is just a MIP. The (relaxed) master

problem is defined as usual:

,

ˆ ˆ[-]
ˆ ˆ() min

dLP

z

DAD mxx MP

z X zΠ =
w

 (51)

ˆ ˆˆ ˆ ˆ ˆs.t. () (,)y T Tz D X≥ − ∀ ∈ Πb π x w x π (52)

W∈w (53)

where ()ˆ ˆ,π x come from the solution of the subproblem either directly or by

decomposition. In theory, the algorithm would eventually enumerate all possible feasible

combinations for (), ,π x w , so a solution must be found. Let us outline this algorithm.

1. A Decomposition Algorithm to Solve DAD

Algorithm 1:

Input: An instance of []LPDAD mxm with matrices D, yA , initial feasible defense plan,
0ŵ (e.g., 0ˆ =w 0), vectors andyb c , and an allowable optimality gap ε .

Output: An ε -optimal defensive plan *w for []LPDAD mxm , the optimal attack plan *x ,

and the optimal system-operation plan *y .

{

Initialize: 0 ˆ ˆˆ ˆ; ; ;z z X←∞ ←−∞ ← Π←∅w w

23

While ()z z ε− > {

Solve ˆ[-SP]dLPDAD mxx for ŵ (either directly or by decomposition) to

obtain an incumbent upper bound on the objective function ˆ()z w ;

{ }ˆ ˆˆ ˆ ˆ ˆ(,)X XΠ← Π∪ x π ;

If ()ˆ()z z<w { *ˆ ˆ ˆ(); ;z z← ←w w w }

Solve ˆ ˆ[-MP]dLPDAD mxx for all ˆ ˆˆ ˆ(,) X∈ Πx π to obtain ˆ ˆ()z XΠ and a new

defense plan ŵ ;

ˆ ˆ();z z X← Π

}

Print (“ε -optimal defense plan, activity levels and objective-function values are”
*w , *y , *z , “respectively.”)

}

The nested decomposition algorithm (Algorithm 1A) is identical to Algorithm 1.

The only difference is that the subproblem is solved inside an inner loop that takes ŵ as

a fixed parameter and, then, proceeds to solve the sub-subproblem ˆ ˆ[]SP mxm′ in (46)-(47)

This is followed by the sub-master problem ˆ ˆ[]MP mxm′ in (48)-(50). The solution

obtained from this inner decomposition loop ()ˆ ˆ,x y is now injected into the outer master

problem. Then, and Algorithm 1 takes over.

Infanger and Morton (1996) propose sharing cuts for different scenarios at the

same stage in order to accelerate the convergence of decomposition methods to solve

multi-stage stochastic linear programs. In the same fashion, it may be possible to use

results obtained in the solution of the subproblem ˆ[-SP]dLPDAD mxx from one major

iteration to the next. This may improve substantially the solution times reported in Table

9, but is beyond the scope of this thesis.

24

2. Implementation of DAD for “Defending the Shortest Path”

We will illustrate Algorithm 1 with the DAD problem “Defending the Shortest

Path” (DSP). In DSP, the defender needs to minimize the maximum traversal length of

the network that represents the system infrastructure. We might be dealing with, for

example, a railway transportation system, a military logistic depot at station A, a potential

customer at station B, and a certain commodity that must be sent from A to B in the

shortest time possible.

The system is modeled as a network with its corresponding set of nodes (e.g.,

train stations on a railway system or road intersections on a road network) and arcs (e.g.,

segments of railways connecting stations or road segments between intersections). Costs

are defined by arc-traversal times and penalties are defined by delays incurred if

interdicted arcs are traversed.

For this model and other models implemented in this thesis, we assume that action

occurs on arcs. If we wish to take action over a node in the network, we just split it and

propagate the interdiction and defense through all the arcs that connect the split nodes

(Ahuja, Magnati and Orlin 1993, pp. 41-42). Furthermore, for simplicity, we consider

only cardinality constraints in the resources for both attacker and defender.

Problem definition: Minimize the maximum traversal cost that the attacker is able

to inflict after his best attack by appropriately selecting the arcs to be protected subject to

available resources. The system is represented by the directed graph (),==G N A which

contains a set of nodes i∈N and the linking arcs (,)k i j= ∈A with their cost kc and

penalty kd . A represents the set of all arcs and N represents the set of all nodes. If an

arc k is traversed, the defender pays its nominal cost kc . However, if that arc has been

interdicted, an extra cost kd is added The latter is to be applied if the defender-operator

traverses k .

Indices and index sets:

,i j∈N Nodes in (,)=G N A

s Source node in (,)=G N A

25

t Sink node in (,)=G N A

(,)k i j= ∈A Arcs in (,)=G N A connecting nodes ,i j∈N

()iFS Forward Star of node i. (Set of all arcs k∈A departing from i)

()iRS Reverse Star of node i. (Set of all arcs k∈A arriving at i)

Data:

0kc ≥ Nominal cost of traversing arc k

0kd ≥ Added penalty the defender-operator pays if arc k is interdicted and then,

traversed

xb Maximum number of attacks to the network (attacker’s resource)

 wb Maximum number of arcs that can be protected (defender resource)

Variables:

kx Attacker’s decision to interdict arc k : 1 kx = if arc k is interdicted, and

0 kx = otherwise

ky Defender’s decision to traverse arc k which has not been

interdicted: 1 ky = if arc k is traversed, and 0 ky = otherwise

iπ Dual variables for flow-balance constraints at each i∈N

kw Defender’s decision to defend arc k : 1 kw = if arc k is defended, and

0 kw = otherwise

Formulation of the basic DSP model:

[]LPDAD mxm

()()min max min 1
DSP DSP

k k k k kW X k
c d x w y

∈ ∈
∈

+ −∑w yx A

 (54)

26

() ()

1 if =
s.t. 0 \{s,t}

1 if = ,
k k

k i k i

i s
y y i

i t∈ ∈

⎧
⎪− = ∀ ∈⎨
⎪−⎩

∑ ∑
FS RS

N (55)

where

{ }| |0,1 | x
DSP k

k

X x b
∈

⎧ ⎫
= ∈ ≤⎨ ⎬
⎩ ⎭

∑x
A

� , and (56)

{ }| |0,1 | w
DSP k

k

W w b
∈

⎧ ⎫
= ∈ ≤⎨ ⎬
⎩ ⎭

∑w
A

� . (57)

Formulation of the subproblem for DSP:

Since we are using decomposition, the following subproblem (see ˆ[]dLPDAD mxx ,

equations (3)-(5)) must be solved:

,

ˆ[-SP]
ˆ() max

dLP

s t

DAD mxx
z π π= −

π x
w (58)

ˆs.t : (1)j i k k k kc d x w kπ π− ≤ + − ∀ ∈A (59)

DSPX∈x (60)

 freei iπ ∀ ∈N

Formulation of the master problem for DSP:

See ˆˆ[-]dLPDAD mxx MP , equations (51)-(53).

,

ˆ ˆ[]
ˆ ˆ() min

dLP

z

DAD mxx MP

z X z

−

Π =
w

 (61)

() ˆ ˆˆ ˆ ˆ ˆ ˆs.t. (,)t s k k k
k

z x d w Xπ π
∈

≥ − − ∀ ∈ Π∑ x π
A

 (62)

DSPW∈w (63)

Constraints (59) are the optimality conditions for the DSP and constraint (60) is

the attacker’s resource constraint, along with the integrality requirements for the

27

variables. Constraints (62) are the Benders cuts for each iteration of the algorithm, and

constraint (63) is the defender’s resource constraint, along with the integrality

requirements for the variables.

Chapter V provides some computational results using this algorithm on grid

networks of different aspects and sizes.

3. Stronger Bounds for DAD

The lower bound provided by the master problem ˆˆ[-]dLPDAD mxx MP in equations

(51)-(53) can be tightened by solving a linear program that calculates the best remaining

operating plan after the defender utilizes defenses to nullify some of the attacks.

Let us illustrate with a simple example. Consider the DSP depicted in Figure 2,

where the defender, with 1 unit of defensive resource, needs to traverse from node 1 to

node 4. The attacker, with 2 units of offensive resource, wants to maximize the length of

the defender-operator’s route.

Figure 2. 4-node network to show a simple DSP problem where the lower

bound provided by the master problem can be tightened.

In the subproblem’s first iteration, because the attacker chooses to attack

{ }ˆ (2, 4), (3, 4)=x and the defender-operator chooses to traverse { }ˆ (1, 2), (2, 4)=y , the

upper bound is set at 4z = . Then, the master problem suggests defending { }ˆ (3, 4)=w

and, because 3 units of penalty ()3,4 3d = are subtracted from the current objective value,

the bound is brought down to 1z = . However, given the last attacks, the defender could

28

have done better by defending { }ˆ (2, 4)=w This would increase the lower bound to 2z =

when the defender traverses { }ˆ (1, 2), (2, 4)=y .

Observe that when the defender has more resources than the attacker, this bound

will always equal the uninterdicted shortest-path length.

A valid lower bound can be obtained from the solution of the following capacity-

expansion LP model, specialized for the DSP.

,
ˆ ˆ ˆ[] min T TLPmxm C

′≥
′ ′+

y y 0
c y x y (64)

s.t. y y yA A ′+ =y y b (65)

ˆT wb′ ≤x y (66)

ˆ() 0T ′− =1 x y (67)

′+ ≤y y 1 , (68)

where ()D diag= d , ()C diag= c and ˆ ˆ(1) ()C C D′ = − + +c x x . The vector ′y denotes the

defender’s decision to protect and traverse an interdicted set of arcs and y denotes the

defender’s decision to traverse and take no defensive action on a different set of arcs,

which may or may not have been interdicted. Constraint (66) represents an upper limit in

the number of interdicted activities that may be protected and then, traversed. Constraint

(67) restricts the use of ′y to those activities that have been attacked. Finally, constraints

(68) are the capacity expansion constraints for every activity.

For the example presented above, the system transformation implied by the

capacity-expansion LP model is depicted in the following figure:

29

1

3

2

1,1

1,1

3,1

5,1

4

c(i,j),u(i,j) ji

1,1

2,1

Figure 3. Transformation of the interdicted system of Figure 1 to solve a
capacity-expansion model and obtain a lower bound. The
interdicted activities are “doubled” with a total cost of k k kc c d′ = + .
Observe that the arcs are labeled in terms of cost and capacity
instead of cost and penalty.

The defender must choose a path from 1 to 4 that minimizes the cost and that

implies the selection of, at most, one of the newly created arcs.

Algorithm 1B is a modification of Algorithm 1 where, right after de master

problem, the capacity-expansion model is solved for the previous pair of ŵ and x̂ . In the

computational chapter, we shall see the tradeoffs between adding an extra step in

Algorithm 1B to solve an LP, and more importantly, the improvement attained by

tightening the lower bound as well as the validity of this bound.

B. CAPACITY-INTERDICTION DEFENDER-ATTACKER-DEFENDER
MODEL

This model is introduced in formulas (11)-(14) and is repeated here for reference.

It is a bi-level MIP, which is, again, difficult to solve directly:

[-CN1] min max minLP T

W X
DAD mxm

∈ ∈ ≥w x y 0
c y

s.t. []
() []

[]

y yA
U

=
≤ − +
≤

y b α
y 1 x w β
y u θ

30

As we claimed at the beginning of the previous chapter, any feasible ŵ will

eventually determine an upper bound *z z≥ . We need to solve the Benders subproblem

ˆ[]LPDAD mxx for ŵ :

ˆ[-CN-SP]
ˆ ˆ() max () ()

dLP

y T T T

DAD mxx
z = + − + +

x,α,β,θ
w b α 1 x w β u θ (69)

s.t. ()y TA I I+ + ≤α β θ c (70)

 free, ,≤ ≤α β 0 θ 0 (71)

X∈x (72)

However, the objective function is still non-linear in the term ()ˆ T− +1 x w β . Since

ŵ is fixed beforehand, we can break up the problem for the different values that ˆ kw can

take on, either 1 or 0:

• When ˆ 1kw = , the kth activity cannot be attacked and the term

()ˆ T− +1 x w β becomes
ˆ| 1

2
k

k
k w

β
=

∑

• When ˆ 0kw = we have () ()
ˆ| 0

ˆ 1
k

T
k k

k w

x β
=

− + = −∑1 x w β , which is still non-

linear. Extra variables and constraints are needed to linearize the term in

this case:

()

()
ˆ ˆ| 0 | 0

1

ˆs.t. 1 | 0
ˆ| 0

0 ,

k k

k k k
k w k w

k k k

k k k k

k

x

M x k w
Mx k w

k

β β

β
β β
β

= =

′− =

′ ≥ − − ∀ =

′ ≤ + ∀ =
′ ≤ ∀

∑ ∑

where M is a sufficiently large number so that the first inequality is obviated

whenever 0kx = .

The subproblem can be rewritten as follows:

31

, , , ˆ ˆ| 1 | 0

ˆ[-CN-SP]
ˆ() max () 2

k k

dLP

y T T
k k

k w k w

DAD mxx
z β β

= =

′= + + +∑ ∑
α β θ x

w b α u θ (73)

s.t. ()y TA I I+ + ≤α β θ c

() ˆ1 | 0k k kM x k wβ ′ ≥ − − ∀ = (74)

ˆ| 0k k k kMx k wβ β′ ≤ + ∀ = (75)

0k kβ ′ ≤ ∀ (76)

 free, , ,
X

′≤ ≤ ≤
∈

α β 0 β 0 θ 0
x

With solutions ()ˆ ˆ ˆ ˆ ˆˆˆ ˆ, , , X∈ΑΒΘα β θ x obtained from the subproblem in all iterations

up to the current one, we can solve the lower-bounding master problem:

ˆ ˆ[-CN-MP]
ˆ ˆ ˆˆ() min

dLP

W

DAD mxx

z X z
∈

ΑΒΘ =
w

 (77)

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆˆ ˆs.t. () () (, , ,)y T T Tz X≥ + − + + ∀ ∈ΑΒΘb α 1 x w β u θ α β θ x (78)

where the set ˆ ˆ ˆˆ X XΑΒΘ ∈ΑΒΘ enumerates all outcomes identified by the subproblem on

every iteration.

1. An Algorithm to Solve DAD-CN

The following algorithm solves the reformulation-based DAD model.

Algorithm 2:

Input: An instance of [-CN1]DADmxm , an allowable optimality gap ε , and any feasible

defense plan 0ŵ (e.g., ˆ =w 0).

Output: An ε -optimal defensive plan *w for [-CN1]DADmxm , as well as the optimal

attack plan *x and the optimal system-operation plan *y .

{

Initialize: 0 ˆ ˆ ˆˆˆ ˆ; ; ;z z X←∞ ←−∞ ← ΑΒΘ ←∅w w

While ()z z ε− > {

32

Solve ˆ[-CN-SP]dLPDAD mxx with input ŵ (see equations (73)-(76)) to

obtain an incumbent upper bound on the objective function ˆ()z w , the

attack plan x̂ and the dual variables ˆ ˆˆ , ,α β θ ;

(){ }ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , ,X XΑΒΘ ←ΑΒΘ ∪ α β θ x ;

If ()ˆ()z z<w {

 *ˆ ˆ(); ;z z← ←w w w

 If () break from While loop;z z ε− ≤

}

Solve ˆ ˆ[-CN-MP]dLPDAD mxx with input ()ˆ ˆ ˆ ˆ ˆˆˆ ˆ, , , X∈ΑΒΘα β θ x (See

equations (77)-(78)), to obtain ˆ ˆ ˆˆ()z XΑΒΘ and a new defense plan ŵ ;

ˆ ˆ ˆˆ();z z X← ΑΒΘ

}

Print (“ε -optimal defense plan, activity levels and objective-function values are”
*w , *y , *z , “respectively.”) ;

}

2. Implementation of DAD-CN Model for DSP

We now proceed to implement DAD in its capacity-interdiction version for the

DSP. We do not allow the defender-operator to traverse interdicted arcs, so we put into

effect the first of the two models -CN1LPDAD mxm .

Indices and index sets. The same as those used in []LPDAD mxm

Data. We must include here:

1ku = Nominal capacity of arc (,)i j .

33

Variables:

iα Dual variable for the operative constraints on each node i .

kβ Dual variables for capacity-interdiction constraints on every arc k

kβ ′ Auxiliary variables for capacity-interdiction constraints

kθ Dual variables for the max-flow constraints on every arc

Formulation of the basic problem for DSP:

()
,

[-CN]
min max 1

DSP DSP

dLP

s t k k k k kX k k

DAD mxx
x w uα α β θ

∈ ∈
∈ ∈

≤ ≤

− + − + +∑ ∑w W x
β 0 θ 0

A A

s.t. (,)j i k k kc k i jα α β θ− + + ≤ ∀ = ∈A

Formulation of the subproblem for DSP:

,

,, , , ˆ ˆ| 1 | 0

ˆ[-CN-SP]
ˆ() max 2

i j k

dLP

s t k i j k k
k w k w k

DAD mxx
z uα α β β θ

= = ∈

′= − + + +∑ ∑ ∑x α β θ
w

A

s.t. (,)j i k k kc k i jα α β θ− + + ≤ ∀ = ∈A (79)

() ˆ1 | 0k k kM x k wβ ′ ≥ − − ∀ ∈ =A (80)

ˆ| 0k k k kMx k wβ β′ ≤ + ∀ ∈ =A (81)

DSPX∈x (82)
 0, 0, 0, freek k k kβ β θ α′≤ ≤ ≤

Constraints (79) are the optimality conditions for DSP; constraints (80) and (81)

are used to linearize the model; and constraint (82) is the attacker’s resource constraint.

34

Formulation of the master problem for DSP:

,

ˆ ˆ[-CN-MP]
ˆ ˆ ˆˆ() min

dLP

z

DAD mxx

z X zΑΒΘ =
w

()

()

ˆ ˆˆ ˆ ˆs.t. 1

ˆ ˆ ˆ ˆ ˆˆˆ ˆ, , ,

s t k k k k k
k k

z x w u

X

α α β θ
∈ ∈

≥ − + − + +

∀ ∈ΑΒΘ

∑ ∑

α β θ x
A A

DSPW∈w

C. THE ATTACKER-DEFENDER-DEFENDER MODEL.

This section proposes a method to solve the Attacker-Defender-Defender model

in the capacity-interdiction version sketched in Chapter III. The purpose is to obtain a

lower bound on *z for DAD.

When we outlined the model, we mentioned that we need to use bounds to solve

bi-level MIPs. For that reason, a decomposition algorithm seems appropriate. Since the

outer layer is a maximization problem, any feasible x̂ leads to a lower bound on *z . This

bound can be calculated by solving the following subproblem:

, ,
ˆ ˆ[-SP] () min ()LP

W
ADD xmm z

′∈ ≥ ≥
′= + +

w y 0 y 0
x cy c d y (83)

s.t. []y y yA A ′+ =y y b α (84)

ˆ() []U≤ − +y 1 x w β (85)

[]′+ ≤y y u θ (86)

As stated in the previous chapter, the inclusion of the second set of constraints

allows us to model an interdicted activity k that cannot be used if it has been attacked

()ˆ 1kx = , unless it is defended. (Specifically for DSP, () ()1 1k ky w= ⇒ =). However,

since the activity is artificially doubled by ky′ , it is still possible to use it, but only if the

corresponding per-unit penalty kd is paid. This alternative action is characterized by

setting the variable 1ky′ = . The third constraint keeps the values of and ′y y within the

capacity limits. (For certain type of problems such as DSP, we can assume that, since

w is binary, ≥y 0 and ′ ≥y 0 will lead to binary solutions.)

35

The vectors ŷ and ŵ extracted from the solution to the subproblem (we need to

form a new ˆ ˆ ˆ ′←y y + y), are now useful to compute an upper bound, which will be given

by the optimum value of the following master problem:

ˆ ˆˆ ˆ[-MP] () maxLP

X
ADD xmm z WY z

∈
=

x
 (87)

()() ˆ ˆˆ ˆ ˆ ˆs.t. (,)T T Tz D WY
+

≤ + − ∀ ∈c x w y w y (88)

Here, constraints (88) represents Benders cuts based on the pair () ˆ ˆˆ ˆ, WY∈w y

coming from all previous SP solutions. The set ˆ ˆWY denotes the ()ˆ ˆ,w y pairs identified

by the algorithm. When ˆ ˆWY WY⊂ , the master problem is a relaxation of LPADD xmm

and ˆ ˆ(,)z w y , which denotes the solution of the master problem given ()ˆ ˆ,w y , is an upper

bound on the objective value.

1. An Algorithm to Solve ADD

In the following two sub-sections, we propose an algorithm to solve the

reordering-based ADD using decomposition, and implement the algorithm for DSP.

Algorithm 3:

Input: An instance of ADDxmm and an allowable optimality gap ε , any feasible attack

plan 0x̂ (e.g., 0ˆ =x 0).

Output: An ε -optimal defensive plan *w for LPADD xmm , as well as the optimal attack

plan *x , optimal system-operation plan *y and a lower bound for DAD (*ˆ DAD ADDz z←).

{

Initialize: 0 ˆ ˆˆ ˆ; ; ; ;z z WY←∞ ←−∞ ← ←∅x x

While ()z z ε− > {

Solve ˆ[-SP]LPADD xmm with input x̂ to obtain an incumbent lower bound

ˆ()z x , defense plan ŵ , and operating plan ˆ ˆ ˆ ′← +y y y ;

36

(){ }ˆ ˆ ˆ ˆ ˆ ˆ,WY WY← ∪ w y ;

If ()ˆ()z z>x {

 ˆ();z z← x * ˆ;←x x

 If () break from While loop;z z ε− ≤

}

Solve ˆ ˆ[-MP]LPADD xmm for all ()ˆ ˆ,w y derived from ˆ ˆWY , to obtain an

upper bound ˆ ˆ()z WY and a new attack plan x̂ ;

ˆ ˆ()z z WY← ;

}

Print (“ADD ε -optimal defense plan, activity levels and DAD lower bound values

are” *w , *y , *z , “respectively.”);

}

2. Implementation of ADD for DSP

Problem definition. The Shortest Path Problem (DSP), as defined in Section A.

Indices and index sets. The same as those used in []LPDAD mxm

Data. The new data with respect to []LPDAD mxm are:

1ku = Nominal capacity of arc k

Variables. Here, we must add:

ky′ Defender’s decision to traverse arc k which has been attacked and not

protected. 0 ky′ = if arc k is traversed, and 0 ky′ = otherwise.

Formulation of the basic problem for DSP: As in the previous subsections and,

for clarity, we start with the formulation of the basic problem:

37

,

[] max min ()
DSPDSP

LP
k k k k kWX k

ADD xmm c y c d y
∈∈

′

′+ +∑wx
y y

() ()

1 if =
s.t. () () 0 \{s,t}

1 if =
k k k k

k i k i

i s
y y y y i

i t∈ ∈

⎧
⎪′ ′+ − + = ∀ ∈⎨
⎪−⎩

∑ ∑
FS RS

N

(1)k k ky x w k≤ − + ∀ ∈A

1k ky y k′+ ≤ ∀ ∈A

Formulation of the subproblem for DSP:

,

ˆ[-SP]
ˆ() min ()

DSP

LP

k k k k kW k

ADD xmm
z c y c d y

∈
∈′

′= + +∑w
y y

x
A

 (89)

() ()

1 if =
s.t. () () 0 \{s,t}

1 if =
k k k k

k i k i

i s
y y y y i

i t∈ ∈

⎧
⎪′ ′+ − + = ∀ ∈⎨
⎪−⎩

∑ ∑
FS RS

N (90)

ˆ(1)k k ky x w k≤ − + ∀ ∈A (91)

1k ky y k′+ ≤ ∀ ∈A (92)

0, 0k ky y k′≥ ≥ ∀ ∈A (93)

Constraints (90) represent standard flow-balance constraints for a shortest-path

problem. Constraints (91) are the capacity-interdiction constraints for every arc

(although, for fixed x̂ , these are actually capacity-expansion constraints). Constraints

(92) are the flow capacity constraints. Since , 1i ju = (already implemented in the model),

either ,i jy or ,i jy′ must be chosen by the defender-operator.

Formulation of the master problem for DSP:

,

ˆ ˆ[-MP]
ˆ ˆ() max

DSP

LP

X z

ADD xmm

z WY z
∈

=
x

 (94)

() () ˆ ˆˆ ˆ ˆ ˆs.t. (1) ,k k k k k
k

z c x w d y WY
∈

≤ + − ∀ ∈∑ w y
A

 (95)

38

D. A SPECIALIZED ALGORITHM TO SOLVE DSP

The previous section illustrated the implementation of ADD for DSP. Let

DSPxmm be an instance of []ADDxmm where attacker and defender have cardinality

constraints on their actions. Then []DSPxmm may be viewed as follows:

• The attacker finds an interdiction plan x̂ ;

• The defender chooses up to wb interdicted arcs, whose cost is ()k kc d+ ,

and converts them back to their original cost kc ; and

• Finally, the defender-operator solves the shortest-path problem through

the network.

A max-min-min is just a max-min where the inner two stages (the defense and the

system operation) are carried out simultaneously. The problem can be envisioned as a

type of network-interdiction problem and solved as the “Maximizing the Shortest-path”

(“ MXSP ”; see Israeli and Wood 2002) in an expanded network with the following

structure:

The network G of Figure 4 is expanded in levels as shown in Figure 5.

Essentially, each level is a copy of the original network. In addition, an extra set of arcs,

denoted by 1k +′∈A , links levels and allows the defender to jump from one level to the

next. These “between-level” arcs k ′ are not subject to interdiction and each mimics its

fellow “same-level” arc. However, each head points to the corresponding node in the next

higher level. The number of levels equals the number of defensive resource available plus

one. (For example, if the defender has four units of defense resources, the network gets

expanded in levels zero through four, i.e., {0,1,2,..., }L=L where 4wL b= =). In this

particular example, the defender has one unit of resource ()1wb = and the network is

expanded by only one level.

39

Figure 4. Original network G with 4 nodes and 4 arcs that represents a

hypothetical shortest-path problem that the defender must solve.

S0

T1

LEVEL 0

LEVEL 1

“Same-level” arcs

“Between-level” arcs

Figure 5. Expanded network +G when 1wb = . Solving the network-
interdiction problem in +G is equivalent to solving ADD in G .

If N denotes the set of all nodes in the original network, + = ×N N L is the set of

all nodes in (,)+ + +=G N A , that is, { }0 1
,

, ,..., L
i l

i i i+

∈ ∈

=
N L

N ∪ .

Likewise, if A represents the set of all arcs k in the original network, 0
+A is the

set of all “same-level” arcs in +G , { }0 0 1, ,...,)L
k

k k k+

∈

= ∪
A

A ; and 1
+A is the set of all

between-level arcs, { }1 0 1 1, ,..., L
k

k k k
+

+
−

′∈

′ ′ ′= ∪
A

A . Then, 0 1
+ + += ∪A A A .

The defender-operator must traverse from the source node at level zero to the sink

node located in the uppermost level.

,

[] max min ()
DSP

LP T T T

X
MXSP D

′∈ ≥ ≥
′+ +

x y 0 y 0
c x y c y (96)

's.t. []y y y
l lA A l′+ = ∀ ∈y y b πL (97)

40

The new variable ′y corresponds to the defender-operator’s decision to jump

from one level to the next, skipping any possible interdiction and paying the original cost.

The functioning of the variable ′y is very similar to the ′y used in ADD (see equations

(83)-(84)). However, in this case, we do not need a constraint to control the expenditure

of defense resource. This is because the structure of the new network itself will force the

defender to pick exactly wb arcs to defend.

Observe now that, as opposed to the generic models, after fixing x , everything is

linear in the objective function. If we take the dual of the inner min problem, we obtain

the following MIP:

[] max max ()
DSP

dLP y T
l l

X
MXSP

∈x π
b π (98)

s.t. () []y T
lA D≤ +π c x y (99)

() []y T
lA ′ ′≤π c y (100)

freeπ

Since this is still an NP-hard MIP (Israeli and Wood 2002), it may be difficult to

solve for large problems. Because we are expanding the network by adding more levels

according to the number of defensive resources, the number of decision variables

increases. A simple, square-lattice network with 25 nodes on each side has only 2,400

arcs, but if 10wb = , []dLPMXSP has 45,600 variables.

1. Implementation of MXSP in +G

Problem definition. Maximize the shortest s-t path in an expanded directed

network +G by interdicting arcs. (Note that the formulation uses data and notation from

the original network G rather than the expanded network +G).

Indices and index sets:

,i j∈N Nodes in (,)=G N A

l∈L Levels { }0,1,..., L=L where wL b= (defense resources)

k∈A Arcs in (,)=G N A

41

s Source node in (,)=G N A , located at level 0

t Sink node in (,)=G N A , located at level L

()iFS Forward Star of node i∈N

()iRS Reverse Star of node i∈N

Data: Similar as those used in the DAD implementation (Section 4)

Variables:

,k ly Defender’s decision to traverse arc k at level l. , 1k ly = if arc is traversed,

, 0k ly = otherwise

,k ly′ Defender’s decision to defend and traverse arc k between levels l and

1l + . , 1k ly′ = if arc is traversed, , 0k ly′ = otherwise

Problem Formulation:

() , ,, \{ }

[]
max min

DSP

LP

k k k k l k k lX k l k l L

MXSP
c d x y c y

′∈
∈ ∈ ∈ ∈

′+ +∑∑ ∑ ∑y yx A L A L

 (101)

{ }, , , ,
() ()

1 for = and 0
s.t. () () 0 (,) \ (,0), (,)

1 for = and
k l k l k l k l

k i k i

i s l
y y y y i l s t L

i t l L
∈ ∈

⎧ =
⎪′ ′+ − + = ∀ ∈ ×⎨
⎪− =⎩

∑ ∑
FS RS

N L (102)

, 0 ,k ly k l≥ ∀ ∈ ∀ ∈A L (103)

, 0 , \{ }k ly k l L′ ≥ ∀ ∈ ∀ ∈A L (104)

Constraints (102) are the flow-balance constraints on every node in +G .

42

Formulation of dual problem:

,0,,

[]
max

dLP

st L

MXSP
π π−

x π

 (105)

, , ,s.t. (,) , []i l j l k k k k ld x c k i j l yπ π− − ≤ ∀ = ∈ ∀ ∈A L (106)

, , 1 ,(,) , \{ } []i l j l k k lc k i j l L yπ π + ′− ≤ ∀ = ∈ ∀ ∈A L (107)

,0 0sπ = (108)

DSPX∈x (109)

freeπ

Constraints (106) and (107) are optimality constraints for DSP, and constraint

(108) normalizes the dual variables (this is valid since the inner min problem has one

redundant flow balance constraint).

Chapter V shows computational results obtained for a batch of hypothetical

networks of different size and shape. It, also, investigates the quality of the bound it

produces with respect to DAD. Further, it shows the differences from the more generally

applicable ADD solution method implemented in Section C.

2. Solving MXSP by Decomposition [-D]LPMXSP

Another possible approach to solving MXSP is using a decomposition method. In

doing so, we will be dealing with constrained shortest paths on one hand, and the typical

cuts of a master problem on the other. Since that outer layer is a maximization problem,

any feasible attack plan ˆ()x will give us a lower bound on the objective function. We can

get this bound by solving the following subproblem:

()
,

ˆ ˆ[-SP] () minLP T T TMXSP z D
′≥ ≥

′= + +
y 0 y 0

x c x y c y (110)

's.t. []y y
l lA A l L+ = ∀ ∈y y b π (111)

Let Y Y Y Y′ ′= × denote the set that contains all possible pairs of (,)′y y . In

addition, ˆ ˆY Y Y Y′ ′⊆ is just a subset of Y Y′ , where only certain defensive/utilization pairs

have been identified by the following master problem:

43

,
ˆ ˆ[-] () max

DSP

LP

X
MXSP MP z Y Y z

∈
′ =

z x
 (112)

() ˆ ˆˆ ˆ ˆ ˆs.t. (,)T T Tz D Y Y′ ′ ′≤ + + + ∀ ∈c x y c y y y (113)

The solution of this master problem, as with previously discussed decomposition

algorithms (see Section IV.C), yields an upper bound on *z .

The subproblem is an LP with an totally unimodular constraint matrix (Ahuja,

Magnanti, and Orlin, 1993, pp. 447-449). Thus, the variables y and ′y only need to be

non-negative and continuous, and will adopt a binary values intrinsically.

However, the master problem is still a MIP and the vector x (the attacker’s

decision variables) must be binary. Essentially, we are dealing with another difficult

problem. We might try to tighten it by using of well-known techniques to reduce the size

of the feasible region for the LP relaxation of the MIP, adding integer cutting planes, but

that is beyond the scope of this thesis.

a. An Algorithm to Solve MXSP by Decomposition

The next two subsections propose a decomposition algorithm to solve

[-D]LPMXSP .

Algorithm 4:

Input: An instance of []ADDxmm ([]DSPxmm), preprocessed by expanding the network

and transformed into an instance of MXSP , and any feasible attack plan ox̂ (e.g., oˆ =x 0).

Output: An ε -optimal defensive plan *′y for ADD , the optimal attack plan *x , the

optimal way to operate the system following a worst-case attack *y , and a lower bound

for DAD, *ˆ DAD MXSPz z← .

{

Initialize: 0 ˆ ˆˆ ˆ; ; ; ;z z Y Y′←∞ ← −∞ ← ←∅x x

While ()z z ε− > {

44

Solve [-SP]LPMXSP with input x̂ to obtain ˆ()z x , and the optimal

combination of defensive and operating plans ˆ ˆ,′y y ; { }ˆ ˆ ˆ ˆ ˆ ˆ(,)Y Y Y Y′ ′ ′← ∪ y y ;

If ()ˆ()z z>x {

 ˆ();z z← x * ˆ;←x x

 If () break from While loop;z z δ− ≤

}

Solve [-MP]LPMXSP for all ˆ ˆˆ ˆ(,) Y Y′ ′∈y y , to obtain ˆ ˆ()z Y Y′ and the next

attack plan x̂ ;

ˆ ˆ()z z Y Y′← ;

}

Print (“ε -optimal defense plan for ADD , activity levels and lower bound

for DAD are” *′y , *y , *z , “respectively.”) ;

}

b. Implementation of MXSP in +G by Decomposition

Indices, sets, parameters, and variables of this formulation are the same as

those proposed in the direct implementation of MXSP. The first subproblem is

implemented as follows:

() , ,, \{ }

[-SP]
ˆmin

LP

k k k k l k k l
k l k l L

MXSP
z c d x y c y

′
∈ ∈ ∈ ∈

′= + +∑∑ ∑ ∑y y
A L A L

 (114)

, , , ,
() ()

1 for = , 0
s.t. () () 0 (,) \{(,0), (,)}

1 for = ,
k l k l k l k l

k i k i

i s l
y y y y i l s t L

i t l L∈ ∈

=⎧
⎪′ ′+ − + = ∀ ∈ ×⎨
⎪− =⎩

∑ ∑
FS RS

N L

, 0 ,k ly k l≥ ∀ ∈ ∈A L

45

, 0 , \{ }k ly k l L′ ≥ ∀ ∈ ∈A L

The master problem is:

[-MP]
ˆ ˆ(,) max

DSP

LP

X

MXSP
z z

∈
′ =

x
y y (115)

() , ,
\{ }

ˆ ˆˆ ˆ ˆ ˆs.t. (,)k k k k l k k l
k l k l L

z c d x y c y Y Y
∈ ∈ ∈ ∈

′ ′ ′≤ + + ∀ ∈∑∑ ∑ ∑ y y
A L A L

 (116)

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

V. COMPUTATIONAL RESULTS

This chapter presents results obtained by testing the four algorithms described

above against hypothetical grid networks, with fixed structure and randomly generated

arc attributes. The grids are created using Java code (Sun Microsystems 2004) using the

pseudo-random number generator included in Java’s class “Random.” The algorithms are

implemented in GAMS (GAMS Development Corporation 2007).

A. COMPUTATIONAL RESULTS FOR DAD MODELS

This section shows the results when DAD is implemented to solve DSP

(Defending the Shortest Path, i.e., the tri-level shortest-path defense problem) for a

network with the following characteristics:

• Square topology similar as Figure 6 with a 10×10 grid of nodes (plus

source and sink).

• There is one source node s and one sink node t. Arcs k departing and

arriving to these nodes have cost 1kc = and interdiction penalty 0kd = .

Figure 6. Network square topology with an n×n grid of nodes.

• Other arc costs kc and penalties kd and penalties, except those mentioned

above, are randomly, uniformly distributed on [0,1] and [1,2] respectively.

48

The XPRESS solver is used within GAMS (XPRESS Solver Manual, GAMS

2007), with an absolute termination criterion of 1 0.01ε = , i.e., 1%, and the same value

for the allowable decomposition gap (2 0.01ε =). (Tests for z z ε− ≤ in the algorithms

are replaced by 1 1 2() ()z z zε ε ε+ − − ≤ .

The first experiment solves DSP as an instance of []LPDAD using Algorithm 1

and 1A, with the subproblem solved directly (standard decomposition) and by nested

decomposition respectively.

Table 1 provides summary statistics of execution time in seconds, elapsed time

(which includes equation-generating time and other overhead), and number of iterations,

for different interdiction and defensive integer resources. Appendix II displays a

complete table with all combinations of attack and defensive resource ranging from two

to seven.

 Standard decomposition
Algorithm 1

Nested decomposition
Algorithm 1A

Ratio

Attack Defen.
CPU time
A (sec.)

Elapsed
time (sec.) Iter.

CPU time
B (sec.)

Elapsed
time sec.) Iter. /A B

2 2 2.7 4.2 4 1.2 7.5 4 2.30

3 3 21.5 24.8 8 10.7 31.0 7 2.01

4 4 109.6 114.8 11 57.3 124.9 14 1.91

5 5 396.6 406.4 21 306.0 484.2 28 1.30

6 6 3047.0 3067.6 43 1719.0 2075.9 32 1.77

7 7 6278.9 6298.9 54 1490.0 1674.6 16 4.21

 Avg: 1.87

Table 1. Computational results for DSP using Algorithm 1 and 1A (Section
IV.A.3.). The “standard decomposition” solves each subproblem
directly, i.e., using LP-based branch-and-bound on the subproblem
MIP. “Nested decomposition” solves the subproblem by Benders
decomposition. “Ratio” represents the improvement in CPU times
for the nested decomposition method with respect to the direct
decomposition one.

49

On average, the nested decomposition runs 1.87 times faster than the standard

decomposition. (We compute this improvement with respect to CPU time, because most

of the extra elapsed time could be recovered by a more efficient implementation that

avoided the GAMS overhead).

2
3

4
5

6
7

2

4

6 0

1

2

3

4

5

6

7

CPU time
 (sec x 1000)

defenses

attacks

Solution times for standard decomposition

2
3

4
5

6
7

2
3

5
6

7 0

1

2

3

4

5

6

7

CPU time
 (sec x 1000)

defenses
attacks

Solution times for nested decomposition

Figure 7. CPU times for DSP problem using Algorithm 1. With less volume
under the surface, which indicates fewer seconds to execute, the
nested decomposition proves to outperform the standard DAD for
almost all cases tested.

Figure 7 shows solution CPU times for each model (standard and nested

decomposition). The horizontal axes correspond to attacks and defensive resources. We

can see how solution time increases as more resources come into play. Moreover, it can

be observed that the amount of attack resource has remarkably more effect on solution

time than does defensive resource. Finally, comparing both graphs, the smaller volume

under the solution-time surface for the nested decomposition indicates, as also see from

Table 1, a better overall performance.

Algorithm 1B proposed in Section IV.A proves to be faster (1.64 times on

average) than the standard decomposition method (Table 10 in Appendix II). The

tightening of the lower bound by solving a capacity-expansion LP is especially useful in

the early iterations of the decomposition algorithm. For the first 6 problems tested (Table

10) Algorithm 1B performs on average 4.70 times faster than Algorithm 1, but not too

50

much improvement is obtained on the remaining 30 problems (1.02) when more than 10

iterations are typically needed to meet the algorithm’s optimality criterion.

The next experiment explores the efficiency of Algorithm 2 (Section IV.B), when

the same sample problems are solved by implementing the capacity-interdiction version

of DAD, [-CN]LPDAD . Table 2 shows a summary of the results for different values of

“M”.

 Algorithm 2 [-CN]LPDAD
Capacity-interdiction (M=2)

Algorithm 2 [-CN]LPDAD
Capacity-interdiction (M=1)

A D
CPU time E

(sec.)

Elap.
time
(sec.) Iter.

Ratio
/A E

CPU time F
(sec.)

Elap.
time
(sec.) Iter.

Ratio
/A F

2 2 6.7 8.3 5 0.39 6.0 8.3 6 0.44

3 3 31.8 35.0 6 0.68 19.2 21.4 6 1.12

4 4 387.0 394.1 14 0.28 74.1 77.5 10 1.48

5 5 1363.0 1369.6 18 0.29 296.1 303.9 17 1.34

6 6 12620.0 12635.9 35 0.24 1799.0 1815.7 39 1.69

7 7 24210.0 24226.5 39 0.26 4717.0 4732.9 37 1.33

 Avg: 0.45 Avg: 1.36

Table 2. Computational results for Algorithm 2 (Section IV.B.8.). The
“ratio” denotes the improvement (decline) of the algorithm with
respect to the performance of Algorithm 1 implementing the
standard decomposition DAD model. The value of M is a key issue
in the capacity-interdiction model.

A careful selection of the value of M is required. A large value for M, such as

M=2, is very expensive computationally speaking. As we see in the right hand side of the

table, for M=1, Algorithm 2 is remarkably faster, close to one order of magnitude. In fact,

its overall performance approaches that of the nested decomposition algorithm.

However, if M is not sufficiently large, the algorithm may give an incorrect

solution. Among all the cases tested for M=1 (Table 11 in Appendix II), in five occasions

there is a discrepancy in the objective-function value. This means that the selected value

of M is not large enough for the algorithm to work correctly.

51

B. BOUND QUALITY FROM ADD MODELS

Although they solve different problems, the reordering-based ADD models have

the ultimate objective of providing a valid bound for the general DAD problem. This

section explores the quality of the bound and the execution times when the standard

decomposition algorithm for DAD model (Algorithm 1) is compared to the general

[]LPADD+ (Algorithm 3 in Section IV.C) and the specialized ADD+ model for DSP

([]MXSP+ , Section IV.D).

The network used in this test is the same 10×10 lattice used in the previous

section. Note that the attacker always gets his original amount of resource plus the

defender’s resource: x xb b δ= + , where wbδ = .

As we observe in the columns for the “relative differences” in Table 3, []LPADD+

and []LPMXSP+ provide a reasonable lower bound for the objective value, although it

seems to worsen when more resources are added to the problem.

 []LPDAD

Algorithm 1
[]LPADD+

Algorithm 3
[]LPMXSP+

A D *z
CPU
(sec)

*z diff Rel diff CPU
(sec)

*z diff Rel diff CPU
(sec)

2 3 4.58 3.4 4.58 0.00 0.0% 34.2 4.55 0.03 0.7% 44.0

2 4 4.58 4.1 4.53 0.05 1.1% 353.9 4.53 0.05 1.1% 1350.0

3 3 4.75 21.5 4.49 0.26 5.5% 104.8 4.55 0.20 4.2% 540.5

3 4 4.75 32.9 4.58 0.17 3.6% 477.6 4.55 0.20 4.2% 190.8

4 2 4.96 66.6 4.59 0.37 7.5% 80.0 4.58 0.38 7.7% 879.1

5 2 5.20 150.8 4.59 0.61 11.7% 321.8 4.59 0.61 11.7% 3621.0

5 3 5.07 211.0 4.59 0.48 9.5% 4916.0 4.58 0.49 9.7% 5632.0

 Avg 5.5% Avg 5.6%

Table 3. Bound quality for ADD+ models solving DSP. “A” and “D” denote

attack and defensive resources respectively; *z denotes the
objective-function value of DAD model for the related problems;

*z denotes the bound provided by ADD+ models; and the “diff”
column represents the difference between *z and *z .

52

As proposed in Section III.B, we would like to use the solutions provided by both

[]LPADD+ and []LPMXSP+ , as a strong bound for DAD. Furthermore, by means of

solution-elimination constraints, we could approximate the bound to the objective-

function value to meet the optimality criterion. However, as shown in Table 3, the

solution times at the same level of tolerance, are not comparable: those for the standard

decomposition DAD model are one order of magnitude faster than those for []LPADD+

and []LPMXSP+ .

Algorithm 4, presented in Section IV.D, proposed a decomposition method

[-D]LPMXSP+ to solve []LPMXSP+ . The former proves to be faster especially for

networks with square topology as in this case (See results in Apendix II). In fact, when

we run the same problems of Table 3, [-D]LPMXSP+ is 2.56 times faster than

[]LPMXSP+ , on average. However, solution times are still too long compared to those of

standard DAD (Algorithm 1).

53

VI. PRACTICAL EXAMPLE

This chapter illustrates an example based on a hypothetical emergency

deployment of a unit of the Spanish Marine Corps. This exercise requires the solution of

an instance of DSP (Defending the Shortest Path) to plan defenses for a small Infantry

entity that needs to traverse from its home base in San Fernando to the Naval Base in

Rota, for emergency deployment. All the information used in this example has been

gathered from open sources, such as the Internet, journals published by regional traffic

management authorities, and the Spanish Department of Defense.

A. PROBLEM DEFINITION

The home base of the Spanish Marine Corp Brigade is located in the city of San

Fernando, province of Cadiz, in the south of Spain. The city has a population of over

90,000 (Wikipedia 2007), is expanding rapidly and the brigade’s movements just outside

the base can easily become entangled in the consequent construction activity. This fact is

important in this scenario: The brigade needs to reach the Naval Base located in Rota,

thirty miles north of San Fernando at the opposite side of Cadiz Bay (Figure 8).

The Special Operation Forces (SOF) are also located in the same military

installations as the Brigade.

54

Figure 8. Map of Cadiz Bay (Spain) showing the two sites of interest (Map
from Wikipedia 2007).

Let us consider the following hypothetical scenario: A frigate from the 41st Fleet

Squadron (home-based at Rota Naval Base) is alerted and receives orders to get

underway immediately for a maritime interdiction operation against a suspect vessel

transiting through the Strait of Gibraltar. For that mission, an estol (a small special

operations unit) is also alerted, and ordered to transit to the dock in Rota Naval Base,

prior to the frigate’s departure. Since air assets are already committed to other tasks, the

estol must transit using its own means, which means with humvees and trucks. The

suspect vessel is operated by a terrorist organization that soon becomes aware that the

most likely spot for the vessel to be interdicted is precisely in the Strait (in Spanish

territorial waters). Thus, a terrorist dormant cell is alerted to conduct counter-deployment

actions.

55

Since the estol (who plays the role of the “defender-operator”) constitutes a small

and indivisible infantry unit, we will model its transit to destination as a shortest-path

problem: the estol must transit from San Fernando (source node) to Rota (sink node) in

the minimum possible time.

Continuing with the scenario, the now-active terrorist cell, i.e., the “attacker,”

comprises six autonomous units with enough striking power to put road segments out of

action for at least one hour. We might envision an attack as a chemical spillage caused by

a deliberate wreck of a previously hijacked truck. This truck transports hydrogen cyanide,

which is a widely used agent in many industrial processes and has a persistency in soil

close to one hour (Sidell 2002).

By means of intelligence reports, this information is known by the estol’s Special

Operations Forces command, i.e., the “defender.” SOF command has the option to plan

ahead, which means deploying up to 10 patrolling units along the road network. To

minimize the maximum transit delay the terrorist cell can achieve, SOF command must

solve a tri-level optimization problem to use sparse resources wisely. This and similar

scenarios would probably be foreseen, however, and the solution to this problem would

be available “off the shelf.”

Further assumptions for the problem are:

• By traversing an interdicted road, the estol “agrees” to pay the penalty in

its entirety. The full delay is incurred if the road segment is traversed,

regardless of the time it takes the estol to get there. (We are being

conservative with respect to the estol’s transit time, because some cleanup

might have been completed by the time that the estol reaches a section of

road that has been attacked.)

• At time zero, when the estol starts its mission, all transit assets (i.e.,

vehicles and trucks) are available for immediate use.

• The model does not account for transit delays in road intersections.

56

B. BUILDING THE NETWORK

Given the background above, the next step is to develop a model of the relevant

road network. This is facilitated through road maps of the Cadiz Bay area, information

provided by local authorities regarding traffic routes (Consejería de Obras Públicas y

Transportes 2006), and satellite images downloaded from the Internet (Google 2007). A

total of 195 nodes are identified. Table 4 shows a snapshot of the list containing all

nodes, each with a brief description, the city or county they belong to, geographical

position in latitude and longitude coordinates, and the node type (with 1 being the source,

–1 the sink, and 0 indicating a transit node). Appendix III presents the full table.

Node number description Location Latitude Longitude Type
1 TEAR San Fernando 36º 28'43.83" N 6º 11'30.05" W 1
2 Armada & la Clica San Fernando 36º 28'51.96" N 6º 11'28.67" W 0
3 La Carraca bridge San Fernando 36º 28'49.28" N 6º 10'50.59" W 0
4 La Carraca dock San Fernando 36º 20'54.69" N 6º 10'51.59" W 0
5 Arapiles rd & La Carraca rd San Fernando 36º 28'43.55" N 6º 11'02.54" W 0
6 Fadricas rd & Caserio de Ossio San Fernando 36º 29'00.20" N 6º 11'45.00" W 0
7 Fadricas rd & Magallanes San Fernando 36º 28'36.54" N 6º 12'27.17" W 0
8 Sfdo Train Station San Fernando 36º 28'33.49" N 6º 11'40.17" W 0
9 Magallanes & Ferrocaril San Fernando 36º 28'30.64" N 6º 11'54.70" W 0

Table 4. Node-list snapshot for the sample network. It includes node

description, location, geographical position and type (type “1”
represents the source node, “0” a transit node and “−1” the sink
node (not shown here).

Since our question revolves around response times, the obvious cost on each arc

will represent the nominal time a vehicle takes for a one-way transit. To find this time,

we require two values for each arc: distance and speed. By dividing distance by speed,

we obtain a transit time, hereafter referred to as “cost.”

The distance values are found using maps and online navigation engines such as

Google 2007. Finding speed values is not so straightforward, necessitating some

subjective estimates. We develop a ranking scale of one to five representing five distinct

average transit speeds, ranging from 15 mph to 55 mph, in intervals of 10 mph. Each

route segment is assigned one of these values, based on the type of road (e.g., highway,

freeway, local road) Also, other factors are taken into account such as the number of

57

lanes, the state of pavement, number of intersections, degree of straightness, etc. A total

of 632 segments are labeled encompassing 453.4 miles of road.

Finally, each arc of the network needs to be assessed in terms of amount of delay

that an interdiction might cause. Two aspects are considered here: persistency of the

chemical agent and the shortest distance (minimum time) to the nearest Civil Protection

or Emergency Management Centers (we assume that setup procedures, safety protocols

and cleanup tasks are implemented as soon as the first emergency-response team reaches

the scene of the “chemical attack” and the clock starts running). The nine centers are

located in the area map and the shortest distances from each one of them to every other

node in the network are calculated.

Let {1,2,..., 207}=N denote the set of all nodes in the network and {1,2,...,9}=C

denote the set of all emergency centers. Also, let (,)g c n denote the minimum cost

(transit time) from emergency center c∈C to node i∈N . Then, the delay coefficient

,i jd for the road segment (,)i j A∈ is calculated as:

() (),
1 min (,) max (,)
2i j a

c c
d p g c i g c j

∈ ∈

⎛ ⎞= + +⎜ ⎟
⎝ ⎠C C

where ap denotes the persistency of the chemical agent. The second term represents the

average of response times to the head and tail node of the arc (,)i j , in case this arc is

attacked. We are assuming that emergency centers have enough capacity to provide

response teams for all possible incidents, and that response teams are not themselves

subject to delays. (Response teams have protective equipment and can pass easily

through one attack site to reach another.)

The following table shows a snapshot of the list containing, for every arc, its

transit-speed rank, length (miles), transit-speed (mph), cost (hours), and penalty if

attacked (hours):

58

From to ranked value distance speed cost delay
1 2 2 0.11 25 0.004 1.237
1 8 1 0.39 15 0.026 1.233
1 32 1 0.38 15 0.025 1.233
2 1 2 0.11 25 0.004 1.237
2 3 3 0.68 35 0.019 1.237
2 6 2 0.6 25 0.024 1.246
2 31 2 1.17 25 0.047 1.284
3 2 3 0.68 35 0.019 1.237

Table 5. Snapshot of the arc list for the sample network. It includes tail and

head nodes, transit-speed rank, distance (miles), transit-speed
(miles/hour), cost (hours) and delay (hours).

Appendix III provides a complete listing of the final network data.

C. SOLVING THE PROBLEM

Algorithm 1, based on []LPDAD mxm , is implemented in GAMS (GAMS

Development Corporation 2007) with the following runtime parameters:

• Solver for LPs and MIPs: XPRESS (v. 16.10)

• Absolute and relative termination criterion for MIP: 0.0

• Allowable relative gap between bounds in the Benders decomposition

method: 0.0

Computation is performed on a personal computer (Processor x86, Family 6,

Model GenuineIntel 1596 Mhz with 1 Gb of RAM). Table 6 shows the results for this

problem:

59

Estol deployment example. Summary 1 []LPDAD
CPU time 9,112.0 sec.
Num. variables in master problem 633
Num. of iterations in the algorithm 184
Shortest s-t path length with no attacks 0.5288 hrs
Shortest s-t path length with 6 attacks, no defenses 2.7356 hrs
Shortest s-t path length with 6 attacks, 10 defenses 1.7019 hrs

Table 6. Computational results for Algorithm 1 []LPDAD . The number of

equations in the final master problem comprises 184 “cuts” plus
one resource constraint.

The complete optimal defense plan is listed in Table 13. As anticipated, the

defender-operator (estol) does not use all the road segments that have been defended

()1 1k kw y= ⇒ = . The reason is that the SOF Command, lacking defensive resources to

protect one route entirely, seeks to spread the patrolling effort among the main three

routes out of San Fernando city. With six units of resource, the terrorist group is able to

interdict each of those, achieving the group’s goal of delaying the estol’s transit to its

destination. Figure 12 depicts this solution over the area map.

Next, we proceed to test the other algorithms to see how well they perform on this

problem. Table 7 shows the results obtained when applying [-CN2]LPDAD (see

equations (18)-(21)).

Estol deployment example. Summary 2 [-CN2]LPDAD , (M=2)
CPU time 43,000 sec.
Num. variables in master problem 633
Num. of iterations in the algorithm 49
Shortest s-t path length with no attacks 0.5288 hrs
Shortest s-t path length with 6 attacks, 10 defenses 1.7019 hrs

Table 7. Computational results of Algorithm 2 [-CN2]LPDAD with M = 2.0

The algorithm yields the same solution, but it takes almost 12 hours to solve. The

burden of the algorithm is the value of the M coefficient. Consequently, different values

60

of M are tried: For M = 1, the problem only takes 3,085 seconds (51 min.) but the

objective value that it yields (1.6361) is 3.9% smaller than what it should be. With

M 1.2 maxk kd= = , Algorithm 2 finds the optimal solution (and proves optimality) in a

more reasonable completion time of 3 hours and 9 minutes.

Implementing []LPADD to compute an optimistic lower bound for this problem

leads to a dead end. Since the defender has more resources (10) than the attacker (6), the

former is able to nullify all the attacks and always bring down the lower bound to the

value of the shortest s-t path with no attacks.

On the other hand, the decomposition algorithm for []LPADD+ (Algorithm 3 in

Section IV.C), with 16 units of resource for the attacker, moves its bounds sluggishly

toward the optimal value of the problem. After 10 hours of execution, the lower bound is

still only 0.58 (and not close to proving optimality because the global upper bound is

4.11) versus a potential value as large as *z =1.709 . Since the d coefficients are a critical

parameter in ADD models, we apply a systematic reduction of 0.5 hours to all road

segments, hoping that the solution is still valid and the bounds converge more quickly.

However, the convergence of the bounds is still too slow.

Finally, as an alternative way to solve []LPADD+ and to obtain an optimistic

lower bound on *z , the specialized model []LPMXSP+ is run with 16 units of resource for

the attacker and 10 for the defender. The problem solves in under 3 hours but yields an

optimal objective value of 0.53, which still is too far from * 1.709z = to be of any value.

D. ANALYSIS

Because of the particular structure of the road network for this deployment

problem, the terrorist group can, with six strikes, disrupt all main routes that connect San

Fernando and Rota. The estol has no other alternative than to wait for the completion of

at least one cleanup, which, unavoidably, delays its transit to the Naval Base.

61

A quick look at the solution shows that attacks are spread throughout the network

and not concentrated around the source and sink nodes. The reason for that might be that

the attacker gains a little more reward by placing his attacks far from emergency-

response centers.

Algorithm 1 seems to be the most useful method to solve DSP for this scenario. In

addition, Algorithm 2 [-CN]DAD offers a reasonable alternative, provided that that the

constant M is selected carefully.

The fact that the penalty coefficients are much greater than the costs (30.52 times

larger on average), makes the problems difficult to solve (see Israeli and Wood 2002). It

becomes clear in the implementation of []LPADD+ , where the time required to solve (11+

hours) is unacceptable for practical purposes. Therefore, those coefficients need to be

reduced or tightened in such a way that they remain valid for the original problem. When

we try this technique on Algorithm 1 []LPDAD , by artificially reducing all kd

coefficients by 0.50 (the smallest penalty is still larger than the shortest s-t path with no

attacks), we obtain the correct solution and, interestingly, a remarkable reduction in

execution time (4,359 seconds).

However, the kd coefficient-reduction technique does not seem to work with

[]ADD+ .

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

VII. CONCLUSIONS

This thesis has defined and developed tri-level models to solve the problem of

defending critical infrastructure. The objective of the defender in the outer level of these

models is to protect a set of activities given a certain amount of defensive resource. The

goal is to minimize the worst damage that a potential attacker can inflict to the system.

Damage is measured by increased costs at the innermost level, assuming that the

defender-operator operates the system optimally. Of course, “cost” can represent

unsatisfied demands, time delays in achieving goals, and minimizing “cost” can also

represent maximizing effectiveness, e.g., system output.

We have formulated a DAD model that is, apparently, solvable only through

decomposition. Algorithm 1 is devised to solve the DAD model. The master problem of

this decomposition algorithm looks like a master problem for a standard Benders

decomposition of a mixed-integer linear program, but the subproblem is a mixed-integer

linear program (MIP) rather than standard linear program (LP). Algorithm 1 solves this

MIP directly, i.e., with LP-based branch-and-bound, while Algorithm 1A solves the MIP

by Benders decomposition, and thus, it may be viewed as a nested decomposition

algorithm. Algorithm 1A proves to be almost twice as fast as Algorithm 1 (1.87 times

faster, on average) on test problems that involve “defending the shortest path” (DSP).

DSP represents a situation in which the defender-operator needs to solve an A-B shortest-

path problem to operate the system optimally, that is, he wants to move from node A in a

road network to node B in the minimum time possible; the attacker seeks to maximize

this minimum path length by interdicting a limited number of road segments and making

them impassible (or adding a delay to their traversal times); but before any attacks occur,

the defender can make a limited number of road segments invulnerable to attack. against

a limited number of attacks so as to reduce effects. The defender’s goal is to minimize the

maximum shortest-path length.

For a small number of offensive and defensive resources, the overhead of a nested

decomposition algorithm suggests the use of the standard decomposition method

(Algorithm 1). In addition, for the size of the shortest-path network, the factor “available

64

attack resource” proves to affect solution time more than the amount of defensive

resource, specifically, more attack resource leads to longer solution times.

Algorithm 1B is similar to Algorithm 1 except for the inclusion of a capacity-

expansion LP to tighten the lower bound. This proves to be especially useful on the early

iterations of the algorithm. In the cases where the numbers of attacks are sparse and the

algorithm typically tends to solve with few iterations, 1B is, on average, 4.70 faster than

Algorithm 1 for the DSP on a square lattice.

A different approach to the tri-level problem is the reformulation-based capacity-

interdiction model [-CN]DAD . This formulation is somewhat more complex than the

general DAD alluded to above and is more difficult to implement. It too requires a

decomposition algorithm to solve (Algorithm 2), and it proves to be almost as fast as

Algorithm 1A. Its solution times depends heavily on a “big-M” value used in linearizing

the model. An excessively large value weakens the subproblem and leads to a poor

performance in terms of completion time. On the other hand, a too small value of M

speeds up the algorithm but does not guarantee a correct solution. It might be interesting

for future research to investigate useful techniques to tighten the upper bound coming

from the decomposition subproblem by selecting an appropriate value of M.

Interchanging the order of the first two levels of optimization in the model, that is,

converting min-max-min into min-min-max, can provide an optimistic (lower) bound on

the optimal DAD objective-function value. We give the advantage to the defender, who

sees the attacker’s plan before defending the system and operate it. The quality of the

bound provided by this reordering-based ADD might be poor, however, but we have

shown that it is possible to improve the bound by adding appropriately to the attacker’s

resource to create “ ADD+ .” The relative differences between the bound obtained from

ADD+ and the optimal value of DAD are reasonably small (5.5% on average) when the

DSP problem is implemented on a square lattice, although these differences tend to

increase as resources for both attacker and defender increase together. We would like to

use this bound in the solution of DAD. However, the computational times observed for

ADD+ are excessive, some times larger than solving DAD by, say, Algorithm 1.

65

Interestingly, for DSP, ADD+ can also be solved as a “Maximizing the Shortest-

Path” (MXSP) in an expanded network, assuming that the attacker and defender are

constrained only by the number of arcs that can be attacked or defended respectively.

MXSP is a bi-level attacker-defender network-interdiction model. The original network is

expanded in levels according to the number of arcs that can be defended. MXSP can be

solved directly or by using Benders decomposition. The latter method proves to be faster

than ADD+ itself, but it is still too slow compared to DAD, at least for DSP.

A practical DSP example is presented to illustrate the effectiveness of the models

and solution procedures to solve realistic problems. Essentially, a small Spanish infantry

unit must traverse from the Marine Corp HQ to the Naval Base for immediate

deployment, using the road network in Cadiz Bay (Spain). A terrorist group is able to

interdict up to 6 road segments, and the Marine Corp Command has the option to plan

ahead, protecting 10 segments by means of armed patrols. The network built to represent

this example contains almost 200 nodes and 630 arcs. The problem is solved by

Algorithm 1, implemented in GAMS, in a reasonable execution time of two and a half

hours.

The fact that the penalty coefficients are much greater that the costs makes the

problems difficult to solve. Thus, a systematic reduction in all coefficients was made in

hopes that the solution obtained is still valid. As a precautionary measure, no penalty

should decreased below the value of the shortest s-t path without attacks. The procedure

in this case proves to be valuable, cutting down the execution time by half.

In future research, it may be interesting to explore other instances of the tri-level

problem, perhaps one in which the theory developed here regarding ADD, applies better

than the DSP.

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

APPENDIX I. NOTATION

The following describes the notation and major symbols used in this thesis.

Particular cases may need additional notation and this is explained when used. Vectors,

represented by lower-case bold letters, are column vectors. Uppercase letters represent

matrices, and Greek letters dual variables.

Symbol Description

c Operating cost

D Diagonal matrix of penalties

f Function, usually in an objective (e.g., max ()f x)

g Function, usually in an objective (e.g., min ()g x)

,i j Network nodes

k System activities

t Superscript index for decomposition methods

U Diagonal matrix of activity capacities

v Binary variable used in the practical example

w Defensive plan (binary vector)

W Feasible set for defensive plans w

x Attack plan (binary vector)

X Feasible set for attack plans x

y Defender-operator’s operating plan

Y Feasible set for operating plans y

z Objective value of an optimization model

68

Symbol Description

α Dual variables for operating constraints

β Dual variables for capacity-interdiction constraints

δ Real number

ε Real number that usually denotes tolerance

φ Dual variables for railroad constraints (practical example)

θ Dual variables for capacity constraints

π Dual variables for operating constraints

∅ Empty set

∑ Summation

* Optimal value or solution (e.g., *z)

Table 8. Notation and definition of terms used.

69

APPENDIX II. DETAILED COMPUTATIONAL RESULTS FOR
PROBLEMS IN CHAPTER V

A. STANDARD DAD AND NESTED DECOMPOSITION

 Standard decomposition

Algorithm 1
Nested decomposition

Algorithm 1A
Ratio

Problem Att. Def.
Time A

(sec)
Elap
(sec) Iter

Time B
(sec)

Elap
Time Iter /A B

1 2 2 2.7 4.2 3 1.2 7.5 3 2.30

2 2 3 3.4 5.3 4 3.3 13.2 5 1.04

3 2 4 4.1 6.4 5 3.1 17.6 7 1.32

4 2 5 4.3 7.0 6 3.9 21.5 9 1.12

5 2 6 7.5 12.1 10 4.5 23.2 10 1.66

6 2 7 7.8 13.9 12 7.3 32.0 15 1.06

7 3 2 17.4 20.7 5 12.2 38.3 6 1.43

8 3 3 21.5 24.8 7 10.7 31.0 6 2.01

9 3 4 32.9 39.2 13 27.5 68.8 11 1.20

10 3 5 39.9 48.5 17 29.9 74.6 14 1.34

11 3 6 44.4 55.4 21 15.7 53.0 13 2.82

12 3 7 65.6 81.8 34 29.1 107.6 22 2.25

13 4 2 64.7 68.2 7 38.2 75.9 6 1.69

14 4 3 93.1 98.3 10 69.8 128.3 10 1.33

15 4 4 109.6 114.8 10 57.3 124.9 13 1.91

16 4 5 183.1 192.9 21 84.9 191.2 17 2.16

17 4 6 240.5 254.3 30 75.6 177.7 21 3.18

18 4 7 287.0 303.7 37 151.4 342.5 35 1.90

19 5 2 150.8 157.6 6 111.0 172.5 8 1.36

20 5 3 211.0 215.2 8 155.9 235.6 11 1.35

21 5 4 473.6 480.2 21 238.8 397.3 16 1.98

22 5 5 396.6 406.4 20 306.0 484.2 27 1.30

23 5 6 548.2 562.8 30 337.6 554.2 30 1.62

24 5 7 682.6 689.9 33 362.7 579.0 26 1.88

25 6 2 852.8 856.3 7 394.3 467.0 6 2.16

26 6 3 979.3 983.2 8 691.5 816.7 12 1.42

70

 Standard decomposition
Algorithm 1

Nested decomposition
Algorithm 1A

Ratio

27 6 4 1587.0 1594.6 16 1030.0 1227.3 18 1.54

28 6 5 2244.0 2255.8 26 1210.0 1451.8 25 1.85

29 6 6 3047.0 3067.6 42 1719.0 2075.9 31 1.77

30 6 7 4331.0 4362.2 69 1530.0 1897.3 36 2.83

31 7 2 389.7 393.0 7 698.4 737.2 4 (0.56)

32 7 3 956.8 962.8 13 166.5 175.0 2 5.75

33 7 4 1633.0 1643.4 22 617.2 648.0 2 2.65

34 7 5 2212.0 2223.7 25 2302.0 2417.1 9 (0.96)

35 7 6 2942.0 2959.3 39 5625.0 2500.1 36 (0.52)

 Avg: 1.87

Table 9. Computational results for Algorithm 1 and Algorithm 1A

implementing DSP with the standard decomposition and the nested
decomposition methods, respectively Grid: lattice 10 10× . Number
of decision variables: 383. Costs range: Uniform [0,1]. Penalties
range: Uniform [1,2]. Model implementation: GAMS. Solver:
XPRESS. Other parameters: optcr=0.01, allowable decomposition
gap=0.01. The “ratio” column corresponds to the improvement
(decline) of Algorithm 1A with respect to Algorithm 1.

B. IMPROVED STANDARD DAD DECOMPOSITION

 Standard decomp.

Algorithm 1
Algorithm 1B Ratio

Prob. Att. Def. *z time A (sec) Iter. time C (sec) Iter. /A C

1 2 2 4.58 2.7 4 1.0 1 2.63

2 2 3 4.58 3.4 5 1.0 1 3.37

3 2 4 4.58 4.1 6 1.0 1 4.02

4 2 5 4.58 4.3 7 1.0 1 4.21

5 2 6 4.55 7.5 11 1.1 1 6.86

6 2 7 4.55 7.8 13 1.1 1 7.14

7 3 2 4.78 17.4 6 17.4 5 1.00

8 3 3 4.75 21.5 8 21.5 7 1.00

9 3 4 4.75 32.9 14 33.0 13 1.00

71

Prob. Att. Def. *z time A (sec) Iter. time C (sec) Iter. /A C
10 3 5 4.75 39.9 18 41.4 17 0.96

11 3 6 4.58 44.4 22 40.7 18 1.09

12 3 7 4.58 65.6 35 41.6 21 1.58

13 4 2 4.96 64.7 8 64.1 7 1.01

14 4 3 4.93 93.1 11 94.4 10 0.99

15 4 4 4.81 109.6 11 109.9 10 1.00

16 4 5 4.79 183.1 22 184.0 21 1.00

17 4 6 4.79 240.5 31 241.0 30 1.00

18 4 7 4.78 287.0 38 294.2 33 0.98

19 5 2 5.20 150.8 7 150.8 6 1.00

20 5 3 5.07 211.0 9 208.7 8 1.01

21 5 4 5.07 473.6 22 480.1 21 0.99

22 5 5 5.07 396.6 21 399.3 20 0.99

23 5 6 5.02 548.2 31 557.1 30 0.98

24 5 7 5.02 682.6 34 639.2 33 1.07

25 6 2 5.35 852.8 8 836.0 7 1.02

26 6 3 5.28 979.3 9 963.0 8 1.02

27 6 4 5.25 1587.0 17 1591.2 16 1.00

28 6 5 5.25 2244.0 27 2493.0 24 0.90

29 6 6 5.18 3047.0 43 3251.0 40 0.94

30 6 7 5.12 4331.0 70 4041.0 59 1.07

31 7 2 5.68 389.7 8 381.7 7 1.02

32 7 3 5.64 956.8 14 953.0 13 1.00

33 7 4 5.59 1633.0 23 1554.0 20 1.05

34 7 5 5.53 2212.0 26 2473.0 25 0.89

35 7 6 5.35 2942.0 40 3670.0 39 0.80

AVG: 1.64

Table 10. Computational results for modified Algorithm 1B implementing
DSP. (See Table 9 for problem and implementation parameters).
The “ratio” column corresponds to the improvement (decline) of
Algorithm 1B with respect to Algorithm 1.

72

C. CAPACITY-INTERDICTION DAD

 Capacity-interdiction (M=2)

Algorithm 2
Capacity-interdiction (M=1)

Algorithm 2

Prob Att. Def.
time E
(sec)

Elap
time Iter. /A E

time F
(sec)

Elap
time Iter. /A F

1 2 2 6.7 8.3 4 (0.39) 6.0 8.3 5 (0.44)

2 2 3 5.8 7.5 4 (0.58) 3.4 4.5 3 (0.99)

3 2 4 8.6 11.0 5 (0.48) 4.4 6.2 5 (0.95)

4 2 5 11.0 13.7 7 (0.40) 8.5 11.8 9 (0.51)

5 2 6 10.2 12.9 7 (0.73) 6.2 9.1 8 1.20

6 2 7 10.7 14.3 8 (0.73) 7.5 12.1 10 1.04

7 3 2 37.0 38.9 5 (0.47) 15.5 17.4 4 1.12

8 3 3 31.8 35.0 5 (0.68) 19.2 21.4 5 1.12

9 3 4 27.1 28.9 4 1.21 16.8 20.0 5 1.96

10 3 5 47.0 51.0 9 (0.85) 29.5 34.1 10 1.35

11 3 6 59.4 65.1 13 (0.75) 30.8 36.3 12 1.44

12 3 7 62.5 68.7 15 1.05 26.0 31.2 12 2.52

13 4 2 142.6 145.0 6 (0.45) 36.1 38.4 5 1.79

14 4 3 204.1 206.7 7 (0.46) 94.6 98.1 8 (0.98)

15 4 4 387.0 394.1 13 (0.28) 74.1 77.5 9 1.48

16 4 5 272.6 278.3 11 (0.67) 128.8 136.0 15 1.42

17 4 6 288.0 295.6 16 (0.84) 125.4 134.5 17 1.92

18 4 7 315.5 323.9 21 (0.91) 103.3 111.3 15 2.78

19 5 2 809.4 811.8 6 (0.19) 133.3 137.5 7 1.13

20 5 3 1059.0 1062.8 10 (0.20) 184.7 189.2 10 1.14

21 5 4 1211.0 1215.9 11 (0.39) 225.8 231.3 13 2.10

22 5 5 1363.0 1369.6 17 (0.29) 296.1 303.9 16 1.34

23 5 6 1184.0 1192.0 20 (0.46) 568.7 580.7 25 (0.96)

24 5 7 1962.0 1976.9 37 (0.35) 588.5 602.7 36 1.16

25 6 2 4237.0 4239.4 5 (0.20) 424.8 426.9 5 2.01

26 6 3 6988.0 6992.6 10 (0.14) 776.3 780.1 10 1.26

27 6 4 7320.0 7325.3 12 (0.22) 1114.0 1121.3 18 1.42

28 6 5 12440.0 12455.6 24 (0.18) 1157.0 1165.7 21 1.94

29 6 6 12620.0 12635.9 34 (0.24) 1799.0 1815.7 38 1.69

73

Prob Att. Def. time E Elap Iter. /A E time F Elap Iter. /A F
30 6 7 14620.0 14588.9 40 (0.30) 1565.0 1581.1 38 2.77

31 7 2 3430.0 3431.9 5 (0.11) 371.2 374.4 7 1.05

32 7 3 5180.0 5197.4 7 (0.18) 1570.0 1573.7 10 (0.61)

33 7 4 11950.0 11959.8 17 (0.14) 2985.0 2991.9 17 (0.55)

34 7 5 13830.0 13839.7 20 (0.16) 2477.0 2436.2 21 (0.89)

35 7 6 14440.0 14447.5 24 (0.20) 5180.0 5194.4 34 (0.57)

36 7 7 24210.0 24226.5 38 (0.26) 4717.0 4732.9 36 1.33

Avg: (0.45) Avg: 1.36

Table 11. Computational results for Algorithm 2 [-CN2]LPDAD ,
implementing DSP for different defensive and interdiction
resources. The improvement in solution times with respect to the
standard decomposition []LPDAD is given by the ratio column
(See Table 9 for problem and implementation parameters).

D. MXSP PROBLEM IN AN EXPANDED NETWORK MODEL

This section of the appendix illustrates the results obtained for the specialized

ADD model developed in the body of the thesis, in Section D.IV.

Table 12 shows execution times, in seconds, when []LPMXSP and [-D]LPMXSP

are tested against a set of networks of different topology and increasing size. The long

topology networks are rectangular grids with 3 nodes in the vertical axis and m > 3 nodes

in the horizontal axis. Similarly, square-topology networks are based on an n n× grid

nodes. They are generated using Java code that randomly assigns costs to the arcs within

the range [0, 1] and interdiction penalties in the range [1, 2].

The number of defense and attack resources are kept fixed throughout the runs to

two and four, respectively. The XPRESS solver is used within GAMS (XPRESS Solver

Manual, GAMS 2007), with zero absolute termination criterion and a value for the

allowable decomposition gap of 0.1ε = for the decomposition algorithm.

74

Problem topology nodes
interdictable

arcs
decision
vars G+ []LPMXSP+ [-D]LPMXSP iterations

1 3×3 11 24 168 0.08 0.17 3

2 3×5 17 44 308 0.25 1.76 10

3 3×7 23 64 448 0.44 1.97 18

4 3×10 32 94 658 1.61 28.60 90

5 3×13 41 124 868 2.53 15.30 47

6 3×15 47 144 1008 9.69 59.03 94

7 3×20 62 194 1358 5.31 29.16 53

8 2×25 77 244 1708 44.70 219.43 167

9 3×30 92 294 2058 13.94 61.87 74

10 3×50 152 494 3458 1342.00 462.25 162

11 4×4 18 48 336 0.16 0.77 10

12 5×5 27 80 560 0.63 1.10 10

13 6×6 38 120 840 2.50 3.77 26

14 7×7 51 168 1176 1.92 4.38 30

15 8×8 66 224 1568 45.33 13.20 55

16 10×10 102 360 2520 36.22 11.90 43

17 12×12 146 528 3696 47.91 52.50 120

18 15×15 227 840 5880 268.77 53.65 61

19 20×20 402 1520 10640 10130.00 300.25 131

Table 12. Computational results for MXSP showing execution times when
DSP is solved directly as a MIP []LPMXSP or by decomposition
[-D]LPMXSP , (See Algorithm 4 in Section IV.D).

Figure 9 and Figure 10 show that there is a small difference in computational

times for different network topologies. Square grids tend to solve faster than long

networks, when comparing grids with roughly the same number of nodes.

With respect to solution methods, the number of decision variables in the problem

is the most significant factor. For grids with few nodes, [-D]LPMXSP solves faster, but

beyond 100 nodes, decomposition methods do much better. There are orders of

magnitude in the differences between solution times when the number of nodes increases.

75

Computational Results (Long topology)

0

200

400

600

800

1000

1200

1400

10 30 50 70 90 110 130 150

nodes (number)

C
P

U
 t

im
e

(s
ec

.)

MXSP
MXSP-D

Figure 9. Computational results for long topology grids. Differences in

performance between []LPMXSP and [-D]LPMXSP become
noticeable beyond 100 nodes (10×10 lattice).

Computational Results (Square topology)

0

200

400

600

800

1000

1200

1400

10 60 110 160 210 260 310 360 410

nodes (number)

C
P

U
 t

im
e

(s
ec

.)

MXSP
MXSP-D

Figure 10. Computational results for square-topology grids. Beyond 200

nodes (15×15 lattice), solving []LPMXSP directly as a MIP is very
computational expensive.

76

THIS PAGE INTENTIONALLY LEFT BLANK

77

APPENDIX III. PRACTICAL EXAMPLE IN CHAPTER VI:
FIGURES AND TABLES

Figure 11. Cadiz Bay road map showing the network nodes. (Map from
Michelin 2007).

ROTA NAVAL
BASE

SAN
FERNANDO

78

PLANS FROM OPTIMAL SOLUTION

Defensive plan Attack plan Shortest path
tail head tail head tail head tail head

1 2 50 51 1 8 122 140
36 50 50 52 8 14 123 125
55 57 107 106 14 16 125 122
57 70 108 105 16 27 126 123
70 72 158 171 27 110 140 141
97 120 169 170 90 92 141 145
98 97 92 93 145 146

105 184 93 121 146 149
120 127 94 95 149 203
121 126 95 97 173 174

 97 90 174 176
 100 94 175 173
 102 100 176 202
 105 184 177 300
 108 105 184 102
 109 108 202 177
 110 109 203 175
 121 126

Table 13. Optimal defensive, attack and traversing plan for the estol DSP

problem.

79

Figure 12. Area map showing the optimal solution to the tri-level problem
given by DAD (Map from Michelin 2007).

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

LIST OF REFERENCES

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows: Theory,
algorithms, and applications. Englewood Cliffs, N.J: Prentice Hall.

Birge, J. R., and Louveaux, F. (1997). Introduction to stochastic programming. New
York: Springer.

Brown, G., Carlyle, M., Salmerón, J., and Wood, K. (2006). Defending critical
infrastructure. Interfaces, 36, pp. 530-547.

Brown, G., Carlyle, M., Salmerón, J., and Wood, R. K. (2005). Analyzing the
vulnerability of critical infrastructure to attack, and planning defenses. Tutorials
in Operations Research. INFORMS 2005, Institute for Operations Research and
Management Science, Hanover, MD, pp. 102-123.

Consejería de Obras Públicas y Transportes - Junta de Andalucía. (2006). Andalucia road
network (red de carreteras de andalucia). Retrieved February 17, 2007, from
http://www.juntadeandalucia.es/obraspublicasytransportes/www/estaticas/carreter
as/red_autonomica_carreteras/.

Cormican, K. J., Morton, D. P., and Wood, R. K. (1998). Stochastic network interdiction.
Operations Research, 46, p. 184.

Cournot, A. A. (1960). Researches into the mathematical principles of the theory of
wealth, 1838 (Nathaniel T. Bacon Trans.). N.Y.: A. M. Kelley.

Dash Optimization Company. (2007). Xpress-MP - leading optimization software.
Retrieved March 01, 2007, from http://www.dashoptimization.com/.

Department of Energy. (2007). Fossil energy: U.S. petroleum reserves. Retrieved July 29,
2007, from http://www.fe.doe.gov/programs/reserves/index.html.

Department of Homeland Security. (2002). The national strategy for homeland security.
Retrieved February 16, 2007, from http://www.whitehouse.gov/homeland/book/.

Department of Homeland Security. (2006). National infrastructure protection plan.
Retrieved February 16, 2007, from
http://www.dhs.gov/xprevprot/programs/editorial_0827.shtm.

FEMA (Federal Emergency Management Agency). (2007). FEMA 452 - risk assessment:
A how-to guide to mitigate potential terrorist attacks. Retrieved March 29, 2007,
from http://www.fema.gov/plan/prevent/rms/rmsp452.shtm.

GAMS Development Corporation. (2007). GAMS (http://www.gams.com/ ed.)
 http://www.gams.com.

82

Google. (2007). Google earth. http://www.earth.google.com. Retrieved February 15,
2007.

Infanger G., and Morton D. (1996). Cut Sharing for Multistage Stochastic Linear
Programs with Interstage Dependency. Mathematical Programming, 75, pp. 241-
256.

Israeli, E., and Wood, R. K. (2002). Shortest-path network interdiction. Networks, 40, pp.
97-111.

Michelin. (2007). ViaMichelin: Street map, maps, route finder, route planner, directions,
road map, route map: Cadiz province road map. Retrieved February 17, 2007,
from http://www.viamichelin.com/viamichelin/int/tpl/hme/MaHomePage.htm.

Ministerio de Defensa (Spanish Departament of Defense). (2006). Armada española.
infantería de marina, tercio de armada, brigada de infantería de marina.
Retrieved February 26, 2007, from
http://www.armada.mde.es/esp/BuquesUnidades/InfanteriaMarina/Tear/Brimar/u
oe.asp.

Office Inspector General. Department of Homeland Security. (2006). OIG 06-40.
progress in developing the national asset database. Retrieved February 20, 2007,
from http://www.dhs.gov/xoig/assets/mgmtrpts/OIG_06-40_Jun06.pdf.

O'Neill, R. P. (1976). Nested decomposition of multistage convex programs. SIAM
Journal on Control and Optimization, 14, pp. 409-418.

Salmeron, J., Wood, R. K., and Baldick, R. (2004). Optimizing electric grid design under
asymmetric threat (II). Monterey, CA; Springfield, VA: Naval Postgraduate
School; http://bosun.nps.edu/uhtbin/hyperion.exe/NPS-OR-04-001.pdf (1.07
MB).

Senate and House of Representatives of the United States of America. (2001). USA
PATRIOT act (H.R. 3162) uniting and strengthening america by providing
appropriate tools required to intercept and obstruct terrorism. Retrieved January
15, 2007, from http://www.epic.org/privacy/terrorism/hr3162.html.

Sidell, F. R. (2002). Jane's chem-bio handbook (2nd ed.). Alexandria, Va: Jane's
Information Group.

Sun Microsystems, I. (2004). JavaTM 2 platform standard ed. 5.0.
 http://java.sun.com/j2se/1.5.0/.

von Stackelberg, H. (1952). The theory of the market economy (T. A. Peacock Trans.).

New York: Oxford University Press.

Wikipedia contributors. (2007). San Fernando (Cádiz). Retrieved February 26, 2007,
from http://es.wikipedia.org/wiki/san_fernando_(cãƒâ¡diz)?oldid=7188499.

83

Wood, R. K. (1993). Deterministic network interdiction. Mathematical and Computer
Modelling, 17, pp. 1-18.

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor R. Kevin Wood
Department of Operations Research
Monterey, California

4. Professor Javier Salmeron
Department of Operations Research
Monterey, California

